Acta Vet. Brno 2010, 79: 599-606
https://doi.org/10.2754/avb201079040599
Radiographic Assessment of Implant Failures of Titanium 3.5 LCP vs. 4.5 LCP Used for Flexible Bridging Osteosynthesis of Large Segmental Femoral Diaphyseal Defects in a Miniature Pig Model
References
1. 2005: In vitro biomechanical comparison of limited contact dynamic compression plate and locking compression plate. Vet Comp Orthop Traumatol 18: 220-226
AZ, Manos JM, Orlansky AS, Todhunter RJ, Trotter EJ, van der Meulen MCH
2. 2001: An in vitro biomechanical study of bone plate and interlocking nail in a canine diaphyseal femoral fracture model. Vet Surg 30: 397-408
< A, Diop A, Maurel N, Viguier E https://doi.org/10.1053/jvet.2001.25863>
3. 2009: Mesenchymal stem cells in bone tissue regeneration and application to bone healing. Acta Vet Brno 78: 635-645
< M, Nečas A, Srnec R, Janovec J, Stehlík L, Raušer P, Urbanová L, Plánka L, Jančář J, Amler J https://doi.org/10.2754/avb200978040635>
4. 1992: Morphometric and physical investigations of segmental cortical bone autografts and allografts in canine ulnar defects. Clin Orthop Relat Res 282: 273-292
C, Verhelpen M, D´Hemncourt J, Govaerts B, Bourgois R
5. 2009: A biomechanice comparison of 3,5 locking compression plate fixation to 3,5 limited contact dynamic compression plate fixation in a canine cadaveric distal humeral metaphyseal gap model. Vet Comp Orthop Traumatol 22: 270-277
D, Lanz O, McLaughlin R, Elder S, Werre S
6. Gautier E, Sommer C. 2003: Guidelines for the clinical application of the LCP. Injury 34: S-B63-S-B76
7. 1993: Healing segmental femoral defects in sheep using recombinant human bone morphogenetic protein. 293: 317-326
TN, Kirker-Head CA, Kriz ML, Holtrop ME, Henning GE, Hipp J, Schelling SH, Wang E
8. 2009: Comparison of the mechanical behaviors of semiconttoured, locking plate-rod fixation and anatomically contoured, conventional plate- rod fixation applied to experimentally induced gap fractures in canine femora. Am J Vet Res 70: 23-29
< CS, Santoni BG, Puttlitz CHM, Palmer RH https://doi.org/10.2460/ajvr.70.1.23>
9. 2000: Effect of intramedullary pin size on reducing bone plate strain. Vet Comp Orthop Traumatol 13: 185-190
< D, Ferry K, Fawcett A, Gentry D, Hyman W, Geller S, Slater M. https://doi.org/10.1055/s-0038-1632663>
10. 1997: Reduction in plate strain by addition of an intramedullary pin. Vet Surg 26: 451-459
< D, Hyman W, Nori M, Slater M https://doi.org/10.1111/j.1532-950X.1997.tb00516.x>
11. 1997: Culture-expanded, bone marrow-derived mesenchymal stem cells can regenerate a critical-sized segmental bone defect. Tissue Eng 3: 173-185
< S, Jaiswal N, Bruder SP https://doi.org/10.1089/ten.1997.3.173>
12. 1989: Intercalary bone allografts: Radiographic evaluation. Radiology 170: 137-141
< VS, Philips WC, Mankin HJ https://doi.org/10.1148/radiology.170.1.2642339>
13. 2007: BMP-silk composite matrices heal critically sized femoral defects. Bone 41: 247-255
< C, Karageorgiou V, Hofmann S, Fajardo R, Betz O, Merkle HP, Hilbe M, von Rechenberg B, McCool J, Abrahamsen L, Nazarian A, Cory E, Curtis M, Kaplan D, Meinel L https://doi.org/10.1016/j.bone.2007.04.186>
14. Koch D 2005: Screws and plates. In: AO Principles of Fracture Management in the Dog and Cat. AO Publishing, Switzerland, pp. 26-50
15. 2000: Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 49: 328-337
< E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I, Boyde A, Ruspantini I, Chistolini P, Rocca M, Giardino R, Cancedda R, Quarto R https://doi.org/10.1002/(SICI)1097-4636(20000305)49:3<328::AID-JBM5>3.0.CO;2-Q>
16. 1999: Critically sized osteo-periostal femoral defects: a dog model. J Invest Surg 12: 115-124
KH, Kadiyala S, Wotton H, Kurth A, Shea M, Hannan M, Hayes WC, Kirker-Head CA, Bruder S
17. 2007: Current concepts: Aseptic nonunion of femoral shaft diaphysis. Eur J Trauma Emerg Surg 2: 120-134
< E, Panagopoulos A, Zouboulis P, Sourgiadaki E https://doi.org/10.1007/s00068-007-6195-5>
18. 1994: Healing of large segmental defects in rat femur is aided by RhBMP-2 in PLGA matrix. J Biomed Mater Res 28: 1149-1156
< SC, Shea M, Battle MA, Kozitza K, Ron E, Turek T, Schaub RG,.Hays WC https://doi.org/10.1002/jbm.820281005>
19. Nečas A, Urbanová L, Srnec R 2007: Principy použití LCP plotének. In: Nečas A, Beale BS, Hulse DA, Srnec R a kol.: Osteotomie a nové trendy v léčbě nemocí kostí a kloubů. VFU Brno, pp. 19-22
20. Nečas A, Proks P, Srnec R, Stehlík L, Urbanová L, Crha M, Raušer P, Janovec J, DvořákV M 2009: Současné trendy v chirurgické léčbě segmentálních fraktur (MIPO, LCP, biomateriály). In Zborník príspevkov z odbornej konferencie „Škola, veda, prax II.“, Košice, Slovenská republika: UVL Košice, pp. 123-127
21. 1989: The effects of fixation on fracture-healing. J Bone Joint Surg Am 71: 306-310
< ME, Chao YS, Kelly PJ https://doi.org/10.2106/00004623-198971020-00022>
22. 1991: The concept of biological plating using the limited contact dynamic compression plate (LC-DCP) − Scientific background, design and application. Injury 22: 1-41
SM
23. Perren SM, Cordey J 1980: The concept of interfragmentary strain. In: Uhthoff HK: Current Concepts of Internal Fixation of Fractures. Berlin Heidelberg New York: Springer-Verlag, p. 63.
24. Piermattei DL, Flo GL 1997: Brinker, Piermattei, and Flo´s Handbook of Small Animal Orthopedics and Fracture Repair, 3rd ed., Philadelphia, WB Saunders, pp. 24-146
25. Rahn BA 1982: Bone healing:histologic and physiologic concepts. In: Summer-Smith G: Bone in Clinical Orthopaedics. Philadelphia, WB Saunders, pp. 335-386
26. 1998: The evolution of femoral shaft plating technique. Clin Orthop 354: 195-208
< SR, Muller U, Gautier E, Ganz R https://doi.org/10.1097/00003086-199809000-00024>
27. 2007: Characterization of a femoral segmental nonunion model in laboratory rats: report of a novel surgical technique. J Invest Surg 20: 249-255
< G, Tucci M, Conflitti J, Graves M, Wingerter S, Woodall J, Ragab A https://doi.org/10.1080/08941930701481312>
28. 2006: Assessement of bone union/nonunion in an experimental model using microcomputed technology. J Trauma 61: 199-205
< R, Zandieh S, Mittermayer R, Pelinka LE, Lexnering M, Hopf R, Kroepfl A, Redl H https://doi.org/10.1097/01.ta.0000195987.57939.7e>
29. 1994: The effect of osteogenin (a bone morphogenic protein) on the formation of bone in orthotopic segmental defects in rats. J Bone Joint Surg 76A: 1676-1687
< S, Cunningham NS, Toth J, Davy D, Reddi AH https://doi.org/10.2106/00004623-199411000-00011>
30. 2003: Biomechanical testing of the LCP - how can stability in locked internal fixators be controlled? Injury Int J Care Injured 34: S-B11-S-B19
< K, Dieter U, Stachowiak G, Gächter A, Kuster MS https://doi.org/10.1016/j.injury.2003.09.021>
31. 2000: Functional load of plates in fracture fixation in vivo and its correlate in bone healing. Injury Int J Care Injured 31: S-B37-S-B50
< K, Klaue K, Perren SM https://doi.org/10.1016/S0020-1383(00)80042-X>
32. Swindle MM 2007: Swine in the laboratory, surgery, anesthesia, imaging, and experimental techniques, 2nd ed., Taylor & Francis Group, Boca Raton, 471 p.
33. 2008: A device for performing whole bone torsional testing in a single-axis linear motion testing machine. Vet Comp Orthop Traumatol 21: 478-480
< JM, Larinde W, Elder SH https://doi.org/10.3415/VCOT-07-10-0091>
34. 1994: Nonunion using a canine model. Arch Orthop Trauma Surg 113: 312-317
< JB https://doi.org/10.1007/BF00426178>
35. 2003: General principles for the clinical use of the LCP. Injury Int J Care Injured 34: S-B31-S-B42
< M https://doi.org/10.1016/j.injury.2003.09.023>
36. 1996: Qualitative and quantitative analysis of orthotopic bone regeneration by marrow. J Orthop Res 14: 85-93
< JR, Lane JM, Burstein AH, Justin R, Klein R, Tomin E https://doi.org/10.1002/jor.1100140115>
37. 1994: Histomorphometric analysis of the repair of a segmental diaphyseal defect with ceramic and titanium fibermetal implants: Effects of bone marrow. J Orthop Res. 12: 439-446
D, Goldberg VM, Stevenson S
38. 2008: Mechanical properties of 18 different AO bone plates and the clamp-rod internal fixation system tested on a gap model construct. Vet Comp Orthop Traumatol 21: 185-194
K, Frei R, Wunderle D, Linke B, Schwieger K, Guerguiev B, Pohler O, Matis U