Acta Vet. Brno 2013, 82: 25-30

https://doi.org/10.2754/avb201382010025

The use of image analysis as a new approach to assess behaviour classification in a pig barn

Annamaria Costa1, Gunel Ismayilova1, Federica Borgonovo1, Toon Leroy2, Daniel Berckmans2, Marcella Guarino1

1University of Milan, Faculty of Veterinary Medicine, Department of Health, Animal Science and Food Safety, Milan, Italy
2Katholieke Universiteit Leuven, M3-BIORES: Measure, Model & Manage Bioresponses, Leuven, Belgium

Crossref Cited-by Linking

  • Yang Qiumei, Chen Miaobin, Xiao Deqin, Huang Senpeng, Hui Xiangyang: Long-term video activity monitoring and anomaly alerting of group-housed pigs. Computers and Electronics in Agriculture 2024, 224, 109205. <https://doi.org/10.1016/j.compag.2024.109205>
  • Cho Cho, Muallifah Nabilah, Puspitasari Fachrina Dwei, Kim Yusung, AI Sadi Mhd Anas, Yi Munyong: A Machine Learning-based Study of Factors and Predictions of the Future Activity Index of Pigs. jkiit 2024, 22, 121. <https://doi.org/10.14801/jkiit.2024.22.4.121>
  • Drexl Veronika, Siebler David, Dittrich Imme, Heins Rina, Diers Sophie, Krieter Joachim: Use of a digital passive infrared motion detector in piglet rearing for the identification of animal activity. Smart Agricultural Technology 2023, 4, 100228. <https://doi.org/10.1016/j.atech.2023.100228>
  • Castro F.L.S., Chai L., Arango J., Owens C.M., Smith P.A., Reichelt S., DuBois C., Menconi A.: Poultry industry paradigms: connecting the dots. Journal of Applied Poultry Research 2023, 32, 100310. <https://doi.org/10.1016/j.japr.2022.100310>
  • Melfsen Andreas, Lepsien Arvid, Bosselmann Jan, Koschmider Agnes, Hartung Eberhard: Describing Behavior Sequences of Fattening Pigs Using Process Mining on Video Data and Automated Pig Behavior Recognition. Agriculture 2023, 13, 1639. <https://doi.org/10.3390/agriculture13081639>
  • Sadeghi Mohammad, Banakar Ahmad, Minaei Saeid, Orooji Mahdi, Shoushtari Abdolhamid, Li Guoming: Early Detection of Avian Diseases Based on Thermography and Artificial Intelligence. Animals 2023, 13, 2348. <https://doi.org/10.3390/ani13142348>
  • Hao Wangli, Zhang Kai, Zhang Li, Han Meng, Hao Wangbao, Li Fuzhong, Yang Guoqiang: TSML: A New Pig Behavior Recognition Method Based on Two-Stream Mutual Learning Network. Sensors 2023, 23, 5092. <https://doi.org/10.3390/s23115092>
  • Drexl Veronika, Dittrich Imme, Haase Anja, Klingelhöller Helene, Diers Sophie, Krieter Joachim: Tail posture as an early indicator of tail biting - a comparison of animal and pen level in weaner pigs. Applied Animal Behaviour Science 2022, 252, 105654. <https://doi.org/10.1016/j.applanim.2022.105654>
  • dos Santos Jonathan Vinícius, Farias Sharacely de Souza, Pereira Thuanny Lúcia, Teixeira Camila Perruchi, Titto Cristiane Gonçalves: Preference for and maintenance of interest in suspended enrichment toys in confined growing pigs. Journal of Veterinary Behavior 2021, 45, 68. <https://doi.org/10.1016/j.jveb.2021.07.005>
  • Yang Qiumei, Xiao Deqin: A review of video-based pig behavior recognition. Applied Animal Behaviour Science 2020, 233, 105146. <https://doi.org/10.1016/j.applanim.2020.105146>
  • Wurtz Kaitlin, Camerlink Irene, D’Eath Richard B., Fernández Alberto Peña, Norton Tomas, Steibel Juan, Siegford Janice, Raboisson Didier: Recording behaviour of indoor-housed farm animals automatically using machine vision technology: A systematic review. PLoS ONE 2019, 14, e0226669. <https://doi.org/10.1371/journal.pone.0226669>
  • Lahrmann Helle Pelant, Hansen Christian Fink, D’Eath Rick, Busch Marie Erika, Forkman Björn: Tail posture predicts tail biting outbreaks at pen level in weaner pigs. Applied Animal Behaviour Science 2018, 200, 29. <https://doi.org/10.1016/j.applanim.2017.12.006>
  • Liu Long-Shen, Ni Ji-Qin, Zhao Ru-Qian, Shen Ming-Xia, He Can-Long, Lu Ming-Zhou: Design and test of a low-power acceleration sensor with Bluetooth Low Energy on ear tags for sow behaviour monitoring. Biosystems Engineering 2018, 176, 162. <https://doi.org/10.1016/j.biosystemseng.2018.10.011>
  • Pezzuolo Andrea, Guarino Marcella, Sartori Luigi, González Luciano A., Marinello Francesco: On-barn pig weight estimation based on body measurements by a Kinect v1 depth camera. Computers and Electronics in Agriculture 2018, 148, 29. <https://doi.org/10.1016/j.compag.2018.03.003>
  • Jun Kyungkoo, Kim Si Jung, Ji Hyun Wook: Estimating pig weights from images without constraint on posture and illumination. Computers and Electronics in Agriculture 2018, 153, 169. <https://doi.org/10.1016/j.compag.2018.08.006>
  • Yang Qiumei, Xiao Deqin, Lin Sicong: Feeding behavior recognition for group-housed pigs with the Faster R-CNN. Computers and Electronics in Agriculture 2018, 155, 453. <https://doi.org/10.1016/j.compag.2018.11.002>
  • Cook N.J., Bench C.J., Liu T., Chabot B., Schaefer A.L.: The automated analysis of clustering behaviour of piglets from thermal images in response to immune challenge by vaccination. Animal 2018, 12, 122. <https://doi.org/10.1017/S1751731117001239>
  • Larsen Mona Lilian Vestbjerg, Andersen Heidi Mai-Lis, Pedersen Lene Juul: Can tail damage outbreaks in the pig be predicted by behavioural change?. The Veterinary Journal 2016, 209, 50. <https://doi.org/10.1016/j.tvjl.2015.12.001>
  • Fontana I., Tullo E., Scrase A., Butterworth A.: Vocalisation sound pattern identification in young broiler chickens. animal 2016, 10, 1567. <https://doi.org/10.1017/S1751731115001408>
  • Fontana Ilaria, Tullo Emanuela, Butterworth Andy, Guarino Marcella: An innovative approach to predict the growth in intensive poultry farming. Computers and Electronics in Agriculture 2015, 119, 178. <https://doi.org/10.1016/j.compag.2015.10.001>
  • Nasirahmadi Abozar, Richter Uwe, Hensel Oliver, Edwards Sandra, Sturm Barbara: Using machine vision for investigation of changes in pig group lying patterns. Computers and Electronics in Agriculture 2015, 119, 184. <https://doi.org/10.1016/j.compag.2015.10.023>
  • D’Eath R.B., Arnott G., Turner S.P., Jensen T., Lahrmann H.P., Busch M.E., Niemi J.K., Lawrence A.B., Sandøe P.: Injurious tail biting in pigs: how can it be controlled in existing systems without tail docking?. Animal 2014, 8, 1479. <https://doi.org/10.1017/S1751731114001359>
  • Silva Claudete Maria da, Furtado Dermeval Araújo, Medeiros Ariosvaldo Nunes de, Saraiva Edilson Paes, Pereira Walter Esfrain, Guimarães Mércia Cardoso da Costa: Image monitoring on the behavior study of three genetic groups of confined goats. R. Bras. Zootec. 2014, 43, 327. <https://doi.org/10.1590/S1516-35982014000600007>
Crossref Cited-by Linking logo