Acta Vet. Brno 2014, 83: 85-102
https://doi.org/10.2754/avb201483S10S85
Adulteration of honey and available methods for detection – a review
References
1. 1993: Aduleration of honey with high fructose corn syrup - Detection by different methods. Food Chem 48: 209 -212
< ESM, Zeina HM, Youssef MM https://doi.org/10.1016/0308-8146(93)90061-J>
2. 2007: Pattern of pH and electrical conductivity upon honey dilution as a complementary tool for discriminating geographical origin of honeys. Food Chem 101: 695-703
< C, Buera P, Elizalde B https://doi.org/10.1016/j.foodchem.2006.01.058>
3. 2013: Effect of adulteration versus storage on volatiles in unifloral honeys from different floral sources and locations. J Food Sci 78: 184-191
< A, Barringer S https://doi.org/10.1111/1750-3841.12033>
4. 2014: Preliminary data on Brazilian monofloral honey from the northeast region using FT-IR ATR spectroscopic, palynological, and color analysis. Química Nova 37: 716-719
LB, Sousa RJ, Barth OM, Gallmann P
5. 1998: Review of the analytical methods to determine the geographical and botanical origin of honey. Food Chem 63: 549-562
< EA https://doi.org/10.1016/S0308-8146(98)00057-0>
6. AOAC 1995: Official Method of Analysis, 978.17, Corn and cane sugar products in honey. Association of Official Analytical Chemists, Arlington, VA, USA, chapter 44: 27-29
7. AOAC 1995: Official Method of Analysis, 991.41, C4 plant sugars in honey. Association of Official Analytical Chemists, Official Methods of Analysis Sugars and Sugar Products, Arlington, VA, USA, chapter 44: 29-31
8. AOAC 2005: Official Method of Analysis, 998.12, C4 plant sugars in honey. International standard stable carbon isotope ratio method. Int. Gaithersburg, MD, USA, chapter 44: 27-30
9. Bartošová L 2013: Methods for proving adulteration (in Czech). SZPI. Available at: http://www.szpi.gov.cz/docDetail.aspx?docid=1049475&docType=ART&nid=12075. Last modified May 24, 2013. Accessed September 7, 2014
10. 2014: Botanical origin, colour, granulation, and sensory properties of the Harenna forest honey, Bale, Ethiopia. Food Chem 167: 213-219
< A , Solomon WK, Bultossa G, Adgaba N, Melaku S https://doi.org/10.1016/j.foodchem.2014.06.080>
11. 2010: Detection of honey adulteration by sugar syrups using one-dimensional and two-dimensional high-resolution nuclear magnetic resonance. J Agric Food Chem 58: 8495-8501
< D, Lolli M, Papotti G, Bortolotti L, Serra G, Plessi M https://doi.org/10.1021/jf101460t>
12. Bogdanov S, Martin P, Lullmann C 1997: Harmonised methods of the European honey commission, Apidologie (extra issue), 1-59
13. 2004: Physico-chemical methods for the characterisation of unifloral honeys: A review. Apidologie 35: 4-17
< S, Ruoff K, Oddo LP https://doi.org/10.1051/apido:2004047>
14. 2006: Liquid chromatography coupled to isotope ratio mass spectrometry: A new perspective on honey adulteration detection. J Agric Food Chem 54: 9719-9727
< AI, Recio JL, Rupérez M https://doi.org/10.1021/jf062067x>
15. 2013: Determination of Chinese angelica honey adulterated with rice syrup by an electrochemical sensor and chemometrics. Anal Meth 5: 2324-2328
< J, Wu X, Yuan L, Han E, Zhoua L, Zhoub A https://doi.org/10.1039/c3ay00041a>
16. 2014: Floral origin markers for authenticating Lavandin honey (Lavandula angustifolia x latifolia). Discrimination from Lavender honey (Lavandula latifolia). Food Control 37: 362-370
< L, Leon-Ruiz V, Alañon ME, Pérez-Coello MS, González-Porto AV https://doi.org/10.1016/j.foodcont.2013.09.003>
17. 2013: Determination of the floral origin of some Romanian honeys on the basis of physical and biochemical properties. Spectr Acta Part A: Mol Biomol Spectr 100: 149-154
< C, Hosu A, Miclaus V, Puscas A https://doi.org/10.1016/j.saa.2012.04.008>
18. Codex Alimentarius – Revised Codex Standard for honey – 2001: Codex stan. 12-1981, Rev.1 (1987), Rev. 2 (2001), 7 p.
19. 2000: Evaluation of the parameters (aw, humidity, storage temperature and osmophilic yeasts concentration) influencing yeast fermentation in honey. Industr Alim 39: 1127-1133
G, Manzano M, Lenardon M, Cocolin L, Cantoni C
20. 2002: Use of differential scanning calorimetry (DSC) as a new technique for detection of adulteration in honeys. 1. study of adulteration effect on honey thermal behavior. J Agric Food Chem 50: 203-208
< CH, Antinelli JFO, Aurieres C, Faucon JP, Cabrol-Bass D, Sbirrazzuoli N https://doi.org/10.1021/jf010752s>
21. 2003: Honey characterization and adulteration detection by pattern recognition applied on HPAEC-PAD profiles. 1. honey floral species characterization. J Agric Food Chem 51: 3234-3242
< CHBY, Militão JSLT, Cleäment MC, Cabrol-Bass D https://doi.org/10.1021/jf021100m>
22. 2005: Detection and quantification of honey adulteration via direkt incorporation of sugar syrups or bee-feeding: preliminary study using high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) and chemometrics. Anal Chim Acta 531: 239-248
< CH, Militão JSLT, Clément MC, Drajnudel P, Cabrol-Bass D https://doi.org/10.1016/j.aca.2004.10.018>
23. 2007: Study and validity of 13C stable carbon isotopic ratio analysis by mass spectrometry and 2H site-specific natural isotopic fractionation by nuclear magnetic resonance isotopic measurements to characterize and control the authenticity of honey. Anal Chim Acta 582: 125-136
< JF, Casabianca H, Lhéritier J, Perrucchietti C, Sanglar C, Waton H, Grenier-Loustalot MF https://doi.org/10.1016/j.aca.2006.08.039>
24. 2011: Quality control of honey using infrared spectroscopy: A review. Appl Spectr Rev 46: 523-538
< D, Corbella E, Smyth HE https://doi.org/10.1080/05704928.2011.587857>
25. European Union (EU): Council Directive 2001/110/EC of 20 December 2001 relating to honey. OJL 32001L0110
26. European Union (EU): Council Regulation (EC) No 797/2004 of 26 April 2004 on measures improving general conditions for the production and marketing of apiculture products. OJL 32004R0797
27. European Union (EU): Commission Regulation (EC) No 917/2004 of 29 April 2004 on detailed rules to implement Council Regulation (EC) No 797/2004 on measures improving general conditions for the production and marketing of apiculture products. OJL 32004R1484
28. 2011: Honey adulteration detection using liquid chromatography/elemental analysis-isotope ratio mass spektrometry. Chinese J Chrom 29: 5-19
X, Wu B, Sehn C, Ding T, Li L, Lu Y
29. 2012: Determination of exogenous gamma-amylase residue in honey. Chinese J Chrom 30: 777-781
< X, Wu B, Shen C, Zhang R, Ding T, Li L https://doi.org/10.3724/SP.J.1123.2012.04015>
30. 2014: Automated DNA extraction from pollen in honey. Food Chem 149: 302-306
< P, Eicheldinger A, Muschler P, Goerlich O, Busch U https://doi.org/10.1016/j.foodchem.2013.10.129>
31. 2014: Detection of adulterated honey produced by honeybee (Apis mellifera L.) colonies fed with different levels of commercial industrial sugar (C3 and C4 plants) syrups by the carbon isotope ratio analysis. Food Chem 155: 155-160
< A, Kocaokutgen H, Garipoglu AV, Onder H, Ekinci D, Biyik S https://doi.org/10.1016/j.foodchem.2014.01.033>
32. 2011: Dielectric properties of honey adulterated with sucrose syrup. J Food Eng 10: 1-7
< W, Liu Y, Zhu X, Wang S https://doi.org/10.1016/j.jfoodeng.2011.06.013>
33. 2013: Comparison of an HPTLC method with the Reflectoquant assay for rapid determination of 5-hydroxymethylfurfural in honey. Anal Bioanal Chem 405: 9207-9218
< A, Klingelhöfer I, Morlock GE https://doi.org/10.1007/s00216-013-7339-6>
34. 2003: Hydroxymethylfurfural in Czech honeys. Czech J Animal Sci 48: 551-557
K, Vorlová L, Borkovcová I, Smutná M, Večerek V
35. 2004: Initial study of honey adulteration by sugar solutions using midinfrared (MIR) spectroscopy and chemometrics. J Agric Food Chem 52: 33-39
< JFD, Downey G, Fouratier V https://doi.org/10.1021/jf034985q>
36. 2000: Adulteration of honey: relation between microscopic analysis and δ13C measurements. Apidologie 31: 717-726
< JD, Meijer HAJ https://doi.org/10.1051/apido:2000156>
37. 2010: Carbon and nitrogen natural stable isotopes in Slovene honey: Adulteration and botanical and geographical aspects. J Agric Food Chem 58: 12794-12803
< U, Golob T, Emer MN, Kump P, Korošec M, Bertoncelj J, Ogrinc N https://doi.org/10.1021/jf102940s>
38. 2014: Determination of the botanical origin of honey by front-face synchronous fluorescence spectroscopy. Appl Spectr 68: 557-563
< L, Zekovic I, Dramicanin T, Dramicanin MD, Rasmus B https://doi.org/10.1366/13-07325>
39. 2012: Detection of honey adulteration by high fructose corn syrup and maltose syrup using Raman spectroscopy. J Food Compos Anal 28: 69-74
< S, Shan Y, Zhu X, Zhang X, Ling G https://doi.org/10.1016/j.jfca.2012.07.006>
40. 2013: Qualitative and quantitative detection of beet syrup adulteration of honey by near-infrared spectroscopy: a feasibility study. Guang pu 33: 2637-2641
SF, Wen RZ, Yin Y, Zhou Z, Shan Y
41. 2014: Evidence for correlation between invertase activity and sucrose content during the ripening process of honey. J Apicul Res 53: 364-373
< B https://doi.org/10.3896/IBRA.1.53.3.03>
42. Ministry of Agriculture 2003: Czech Decree No. 76/2003 Coll., laying down the requirements for natural sweeteners, honey, sweets, cacao powder and cacao mixtures with sugar, chocolate, and chocolate candies
43. 2009: Polysaccharides as a marker for detection of corn sugar syrup addition in honey. J Agric Food Chem 57: 2105-2111
< M, Herbreteau B, Faure R, Salvador A https://doi.org/10.1021/jf803384q>
44. Mehryar L, Esmaiili M 2011: Honey and honey adulteration detection: A Review. In proceeding of 11th International congress on engineering and food - Athens, Greece 3 (iCEF11)
45. 2008: HPAEC-PAD oligosaccharide analysis to detect adulterations of honey with sugar strupe. Food Chem 107: 922-928
< V, Corzo N, Sanz ML https://doi.org/10.1016/j.foodchem.2007.08.050>
46. 2011: Application of UV visible absorption spectroscopy and principal components back propagation artifical neural network to identification of authentic and adulterated honeys. Chinese J Anal Chem 39: 1104-1108
WJ, Meng YY, Zhang XY, Kong M
47. 2002: Discrimination and classification of beet and cane inverts in honey by FT-Raman spectroscopy. Food Chem 76: 231-239
< MM, Irudayaraj J https://doi.org/10.1016/S0308-8146(01)00292-8>
48. 2013: Application of a newly developed and validated high-performance thin-layer chromatographic method to control honey adulteration. J Chrom A 1272: 132-135
< A, Hosu A, Cimpoiu C https://doi.org/10.1016/j.chroma.2012.11.064>
49. 2014: Pollen analysis of honey from the Baltic region, Estonia. Grana 53: 54-61
< L, Koff T https://doi.org/10.1080/00173134.2013.850532>
50. 2013: Rapid determination of 5-hydroxymethylfurfural by DART ionization with time-of-flight mass spektrometry. Anal Bioanal Chem 405: 4737-4745
< A, Drgová L, Grégrová A, Čížková H, Ševčík R, Oldřich M https://doi.org/10.1007/s00216-013-6875-4>
51. 2012: Analysis of adulteration in honey with standard sugar solutions and syrups using attenuated total reflectance - Fourier transform infrared spectroscopy and multivariate methods. CyTA J Food 10: 119-122
< MA, Rojas-López M, Delago-Macuil R https://doi.org/10.1080/19476337.2011.596576>
52. 2007: A new methodology based on GC-MS to detect honey adulteration with commercial syrups. J Agric Food Chem 55: 7264-7269
< AI, Soria AC, Martínez-Castro I, Sanz ML https://doi.org/10.1021/jf070559j>
53. 2010a: Carbohydrate composition of high-fructose corn syrups (HFCS) used for bee feeding: Effect on honey composition. J Agric Food Chem 58: 7317-7322
< AI, Weiss M, Sammataro D, Finely J, Sanz ML https://doi.org/10.1021/jf100758x>
54. 2010b: Detection of adulterations of honey with high fructose syrups from inulin by GC analysis. J Food Compos Anal 23: 273-276
< AI, Rodríguez-Sánchez S, Sanz ML, Martínez-Castro I https://doi.org/10.1016/j.jfca.2009.10.004>
55. 2012: Direct potentiometric of diastase activity determination of diastase activity in honey. Food Chem 135: 827-831
< M, Sakač N https://doi.org/10.1016/j.foodchem.2012.05.006>
56. 2003: The occurrence of osmophilic yeasts in honey. Deutsche Lebensmittel-rundschau 99: 310-319
A, Horn H, Hammes WP
57. 2013: Phenolic profile, antioxidant activity and palynological analysis of stingless bee honey from Amazonas, Northern Brazil. Food Chem 141: 3552-3558
< IAA, Silva TMS, Camara CA, Queiroz N, Magnani M, Novais JS, Soledade LEB, Lima EO, Souza AL, Souza AG https://doi.org/10.1016/j.foodchem.2013.06.072>
58. 2014: Physicochemical parameters and sensory properties of honeys from Buenos Aires region. Food Chem 152: 500-507
< MF, Varela MS, Palacio MA, Ruffinengo S, Yamul DK https://doi.org/10.1016/j.foodchem.2013.12.011>
59. 2001: A rapid spectroscopic technique for determining honey adulteration with corn syrup. J Food Sci 66: 787-792
< S, Irudayaraj J https://doi.org/10.1111/j.1365-2621.2001.tb15173.x>
60. 2002: Classification of simple and complex sugar adulterants in honey by mid-infrared spectroscopy. Int J Food Sci Tech 37: 351-360
< S, Irudayaraj J https://doi.org/10.1046/j.1365-2621.2002.00573.x>
61. 2014: Practical procedure for discriminating monofloral honey with a broad pollen profile variability using an electronic tongue. Talanta 128: 284-292
< MEBC, LG Dias, Veloso ACA, Estevinho L, Peres AM, Machado AASC https://doi.org/10.1016/j.talanta.2014.05.004>
62. 2006: Composition of stingless bee honey: Setting quality standards. Interciencia 31: 867-875
B, Roubik D, Barth O, Heard T, Enríquez E, Carvalho C, Villas-Bôas J, Marchini L, Locatelli J, Persano-Oddo L, Almeida-Muradian L, Bogdanov S, Vi P
63. 2010: A study of adulteration in brazilian honeys by carbon isotope ratio. Cięncia e Agrotecnologia 34: 434-439
< CR, Ducatti C, Filho VWG, Orsi RO, Silva ET https://doi.org/10.1590/S1413-70542010000200023>
64. 2012: A hybrid sensing approach for pure and adulterated honey classification. Senzore 12: 14022-14040
N, Saleh JM, Shakaff AYM, Zakaria A
65. 2013: Detection of adulteration in honey samples added various sugar syrups with 13C/12C isotope ratio analysis metod. Food Chem 138: 1629-1632
< M https://doi.org/10.1016/j.foodchem.2012.11.068>
66. 2014: Effect of postharvest storage conditions on the colour and freshness parameters of raw honey. Int J Food Sci Tech 49: 181-187
< M, Vargas M, Escriche I https://doi.org/10.1111/ijfs.12296>
67. 2010: Rapid analysis of glucose, fructose, sucrose, and maltose in honeys from different geographic regions using Fourier transform infrared spectroscopy and multivariate analysis. J Food Sci 75: 208-214
< J, Kliks MM, Jun S, Jackson M, Li QX https://doi.org/10.1111/j.1750-3841.2009.01504.x>
68. 2007: Geographical classification of honey samples by near-infrared spectroscopy: A feasibility study. J Agri Food Chem 55: 9128-9134
< T, Downey G, Kelly JD, O’Donnell C https://doi.org/10.1021/jf072010q>
69. 2013: 2-acetylfuran-3-glucopyranoside as a novel marker for the detection of honey adulterated with rice syrup. Agric Food Chem 61: 7488-7493
< X, Wang Q, Li Y, Wu L, Chen L, Zhao J, Liu F https://doi.org/10.1021/jf401912u>
70. 2011: A biomimetic sensor for the classification of honeys of different floral origin and the detection of adulteration. Senzore 11: 7799-7822
A, Shakaff AYM, Masnan MJ, Ahmad MN, Adom AH, Jaafar MN, Ghani SA, Abdullah AH, Aziz AHA, Kamarudin LM, Subari N, Fikri NA
71. 2013: Identification of adulterated honey based on three dimensional fluorescence spectra technology. Spectr Spectral Anal 33: 1626-1030
JW, Han XY, Chen QS, Ouyang Q
72. 2010: Detection of adulterants such as sweeteners materials in honey using near -infrared spectroscopy and chemometrics. J Food Eng 101: 92-97
< X, Li S, Shan Y, Zhang Z, Li G, Su D, Liu F https://doi.org/10.1016/j.jfoodeng.2010.06.014>