Acta Vet. Brno 2014, 83: 85-102

https://doi.org/10.2754/avb201483S10S85

Adulteration of honey and available methods for detection – a review

Blanka Zábrodská, Lenka Vorlová

University of Veterinary and Pharmaceutical Sciences Brno, Faculty of Veterinary Hygiene and Ecology, Department of Milk Hygiene and Technology, Brno, Czech Republic

Received October 2, 2014
Accepted January 14, 2015

Crossref Cited-by Linking

  • Bose Debalina, Padmavati Manchikanti: Honey Authentication: A review of the issues and challenges associated with honey adulteration. Food Bioscience 2024, 61, 105004. <https://doi.org/10.1016/j.fbio.2024.105004>
  • Muhammad Nur Ainnaa Mardhiah, Awang Noor Azura, Talip Balkis A., Zalkepali Noor Ummi Hazirah Hani, Supaat Murni Imam: Highly sensitive adulteration detection in kelulut honey utilizing fiber Bragg grating technology with Q-switched pulse erbium-doped fiber laser and innovative spider silk substrate. Sensors and Actuators A: Physical 2024, 376, 115656. <https://doi.org/10.1016/j.sna.2024.115656>
  • Skorobogatov Evgenii V., Shik Anna V., Sobolev Pavel V., Stepanova Irina A., Orekhov Vladislav S., Ustyuzhanin Alexander O., Koksharova Marina V., Ikhalaynen Yury A., Timchenko Yury V., Rodin Igor A., Beklemishev Mikhail K.: Monitoring Different Water Types for Engine Oil–Water-Soluble Fraction and Iron(2+) Using a Reaction-Based Optical Sensing Strategy: A Proof-of-Concept Study. Ind. Eng. Chem. Res. 2024, 63, 12336. <https://doi.org/10.1021/acs.iecr.4c01502>
  • Kumar Deepak, Hazra Kalyan, Prasad Peyyala Venkata Vara, Bulleddu Rajesh: Honey: an important nutrient and adjuvant for maintenance of health and management of diseases. J. Ethn. Food 2024, 11. <https://doi.org/10.1186/s42779-024-00229-3>
  • Ahmed Esmael, Barage Sagar: Detection of honey adulteration using machine learning. PLOS Digit Health 2024, 3, e0000536. <https://doi.org/10.1371/journal.pdig.0000536>
  • Murr J., Brockmeyer J.: Honigauthentizität – Methodischer Ansatz für den Nachweis von unreifem Honig mittels Proteinanalytik. Lebensmittelchemie 2023, 77. <https://doi.org/10.1002/lemi.202352119>
  • Robert Ikedi I. O., Birech Z., Kaniu M. I.: Rapid Assessment of Molasses Adulterated Honey Using Laser Raman Spectroscopy and Principal Component Analysis. Food Anal. Methods 2023, 16, 1702. <https://doi.org/10.1007/s12161-023-02538-w>
  • Schievano Elisabetta, Piana Lucia, Tessari Marco: Automatic NMR-based protocol for assessment of honey authenticity. Food Chemistry 2023, 420, 136094. <https://doi.org/10.1016/j.foodchem.2023.136094>
  • Biswas Anisha, Hazra Sudipta Kumar, Chaudhari Sachin R.: Detection of barley malt syrup as an adulterant in honey by 1H NMR profile. Food Chemistry 2023, 429, 136842. <https://doi.org/10.1016/j.foodchem.2023.136842>
  • Patel Hemraj Bhai, Nirala A.K.: Assessment of adulteration in honey by artificial sweeteners using dynamic laser speckle technique. Optik 2023, 289, 171264. <https://doi.org/10.1016/j.ijleo.2023.171264>
  • Yücel Pelin, Güçlü Hülya, Mert Yüksel, Yalçın Füsun, Ocak Sema Bilge: Detection of adulteration using statistical methods over carbon isotope ratios in carob, grape, fig and mulberry pekmez. Journal of Food Composition and Analysis 2023, 115, 104979. <https://doi.org/10.1016/j.jfca.2022.104979>
  • Bodor Zsanett, Benedek Csilla, Behling Hermann, Kovacs Zoltan: Fusion of electronic tongue and NIRS for the detection of heat treatment of honey. LWT 2023, 186, 115219. <https://doi.org/10.1016/j.lwt.2023.115219>
  • Wójcik Szymon, Ciepiela Filip, Jakubowska Małgorzata: Computer vision analysis of sample colors versus quadruple-disk iridium-platinum voltammetric e-tongue for recognition of natural honey adulteration. Measurement 2023, 209, 112514. <https://doi.org/10.1016/j.measurement.2023.112514>
  • Jin Qi, Meng Zhaozong, Chen Zhijun, Li Zhen: Review of scientific instruments: Evaluation of adulteration in honey using a microwave planar resonator sensor. Review of Scientific Instruments 2023, 94. <https://doi.org/10.1063/5.0166005>
  • Farooq Saba, Ngaini Zainab: The Enzymatic Role in Honey from Honey Bees and Stingless Bees. COC 2023, 27, 1215. <https://doi.org/10.2174/0113852728258520230921060447>
  • P\u0159idal Antonín, Musila Jan, Svoboda Ji\u0159í: Condition and Honey Productivity of Honeybee Colonies Depending on Type of Supplemental Feed for Overwintering. Animals 2023, 13, 323. <https://doi.org/10.3390/ani13030323>
  • Bodor Zsanett, Majadi Mariem, Benedek Csilla, Zaukuu John-Lewis, Veresné Bálint Márta, Csajbókné Csobod Éva, Kovacs Zoltan: Detection of Low-Level Adulteration of Hungarian Honey Using near Infrared Spectroscopy. Chemosensors 2023, 11, 89. <https://doi.org/10.3390/chemosensors11020089>
  • Raweh Hael S. A., Badjah-Hadj-Ahmed Ahmed Yacine, Iqbal Javaid, Alqarni Abdulaziz S.: Physicochemical Composition of Local and Imported Honeys Associated with Quality Standards. Foods 2023, 12, 2181. <https://doi.org/10.3390/foods12112181>
  • Tomczyk Monika, Czerniecka-Kubicka Anna, Miłek Michał, Sidor Ewelina, Dżugan Małgorzata: Tracking of Thermal, Physicochemical, and Biological Parameters of a Long-Term Stored Honey Artificially Adulterated with Sugar Syrups. Molecules 2023, 28, 1736. <https://doi.org/10.3390/molecules28041736>
  • Ali Hina, Rafique Khalid, Ullah Rahat, Saleem M., Ahmad Iftikhar: Classification of Sidr honey and detection of sugar adulteration using right angle fluorescence spectroscopy and chemometrics. Eur Food Res Technol 2022, 248, 1823. <https://doi.org/10.1007/s00217-022-04008-9>
  • Sajadi Maryam, Rasuli Reza: A Facile Approach to Distinct Unusual Sucrose in Honey by Titanium Oxide Nanoparticles. Plasmonics 2022, 17, 65. <https://doi.org/10.1007/s11468-021-01490-x>
  • Rachineni Kavitha, Rao Kakita Veera Mohana, Awasthi Neeraj Praphulla, Shirke Vrushali Siddesh, Hosur Ramakrishna V., Chandra Shukla Satish: Identifying type of sugar adulterants in honey: Combined application of NMR spectroscopy and supervised machine learning classification. Current Research in Food Science 2022, 5, 272. <https://doi.org/10.1016/j.crfs.2022.01.008>
  • Yong Chin-Hong, Muhammad Syahidah Akmal, Aziz Fatimatuzzahra' Abd, Nasir Fatin Ilyani, Mustafa Mohd Zulkifli, Ibrahim Baharudin, Kelly Simon D., Cannavan Andrew, Seow Eng-Keng: Detecting adulteration of stingless bee honey using untargeted 1H NMR metabolomics with chemometrics. Food Chemistry 2022, 368, 130808. <https://doi.org/10.1016/j.foodchem.2021.130808>
  • Svalova Tatiana S., Saigushkina Anna A., Verbitskiy Egor V., Chistyakov Konstantin A., Varaksin Mikhail V., Rusinov Gennady L., Charushin Valery N., Kozitsina Alisa N.: Rapid and sensitive determination of nitrobenzene in solutions and commercial honey samples using a screen-printed electrode modified by 1,3-/1,4-diazines. Food Chemistry 2022, 372, 131279. <https://doi.org/10.1016/j.foodchem.2021.131279>
  • Zhang Guyang, Abdulla Waleed: On honey authentication and adulterant detection techniques. Food Control 2022, 138, 108992. <https://doi.org/10.1016/j.foodcont.2022.108992>
  • Nobari Moghaddam Hanieh, Tamiji Zahra, Akbari Lakeh Mahsa, Khoshayand Mohammad Reza, Haji Mahmoodi Mannan: Multivariate analysis of food fraud: A review of NIR based instruments in tandem with chemometrics. Journal of Food Composition and Analysis 2022, 107, 104343. <https://doi.org/10.1016/j.jfca.2021.104343>
  • Liu Zhaolong, Xu Tianyang, Zhou Jinhui, Chen Lanzhen: Application of stable isotopic and elemental composition combined with random forest algorithm for the botanical classification of Chinese honey. Journal of Food Composition and Analysis 2022, 110, 104565. <https://doi.org/10.1016/j.jfca.2022.104565>
  • Truong Hien Thi Dieu, Reddy Pullanagari, Reis Marlon M., Archer Richard: Quality assessment of mānuka honeys using non-invasive Near Infrared systems. Journal of Food Composition and Analysis 2022, 114, 104780. <https://doi.org/10.1016/j.jfca.2022.104780>
  • Akyıldız İsmail Emir, Erdem Özge, Raday Sinem, Daştan Tuğçe, Acar Sezer, Uzunöner Dilek, Düz Gamze, Damarlı Emel: Elucidating the false positive tendency at AOAC 998.12 C-4 sugar test for pine honey samples: Modified sample preparation method for accurate δ13C measurement of honey proteome. Journal of Food Composition and Analysis 2022, 114, 104787. <https://doi.org/10.1016/j.jfca.2022.104787>
  • Walker M. J., Cowen S., Gray K., Hancock P., Burns D. T.: Honey authenticity: the opacity of analytical reports - part 1 defining the problem. npj Sci Food 2022, 6. <https://doi.org/10.1038/s41538-022-00126-6>
  • Walker M. J., Cowen S., Gray K., Hancock P., Burns D. T.: Honey authenticity: the opacity of analytical reports—part 2, forensic evaluative reporting as a potential solution. npj Sci Food 2022, 6. <https://doi.org/10.1038/s41538-022-00127-5>
  • Hu Shuhan, Li Hongyi, Chen Chen, Chen Cheng, Zhao Deyi, Dong Bingyu, Lv Xiaoyi, Zhang Kai, Xie Yi: Raman spectroscopy combined with machine learning algorithms to detect adulterated Suichang native honey. Sci Rep 2022, 12. <https://doi.org/10.1038/s41598-022-07222-3>
  • Dumancas Gerard G., Setijadi Catherine, Dufour Ben, Aglobo Jastine, Carisma Marjorie S., Bello Ghalib A., Dalisay Doralyn S., Saludes Jonel P.: Comparison of Genetic and Non-genetic Algorithm Partial Least Squares for Sugar Quantification in Philippine Honeys. Analytical Letters 2022, 55, 1901. <https://doi.org/10.1080/00032719.2022.2033985>
  • Akinwande Kayode Lawrence, Oladapo Ajayi Joshua: Aberrant in physicochemical properties, functional health and medicinal grades of honeys from different sales outlets in Southwest Nigeria. Bull Natl Res Cent 2022, 46. <https://doi.org/10.1186/s42269-022-00873-2>
  • Baxi Vikrant K., Gadani Deepak H., Rana Vipin A.: Dielectric properties of honey adulterated by sugar syrup. International Journal of Food Engineering 2022, 18, 603. <https://doi.org/10.1515/ijfe-2022-0063>
  • Wójcik Szymon, Ciepiela Filip, Jakubowska Małgorzata: Deep Learning and Smartphone-Assisted Color Recognition of Honey Adulterated Samples Versus Quadruple-Disk Iridium-Platinum Voltammetric Sensor Experiments. SSRN Journal 2022. <https://doi.org/10.2139/ssrn.4167483>
  • Singh Bipin, Barman Sanmitra: Rapid and Precise Discrimination between Pure and Adulterated Commercial Indian Honey Brands using FTIR Spectroscopy and Principal Component Analysis. CNF 2022, 18, 780. <https://doi.org/10.2174/1573401318666220509214603>
  • Che Mohd Nassir Che Mohd Nasril, Abdul Hamid Hafizah, Hambali Aqilah, Abd Manan Nizar, Mehat Muhammad Zulfadli, Ismail Nurul Iman, Mustapha Muzaimi: Neuroprotective Potentials of Honey for Cerebral Small Vessel Disease. OBM Neurobiol 2022, 06, 1. <https://doi.org/10.21926/obm.neurobiol.2204144>
  • Martinello Marianna, Stella Roberto, Baggio Alessandra, Biancotto Giancarlo, Mutinelli Franco: LC-HRMS-Based Non-Targeted Metabolomics for the Assessment of Honey Adulteration with Sugar Syrups: A Preliminary Study. Metabolites 2022, 12, 985. <https://doi.org/10.3390/metabo12100985>
  • Bodor Zsanett, Benedek Csilla, Aouadi Balkis, Zsom-Muha Viktoria, Kovacs Zoltan: Revealing the Effect of Heat Treatment on the Spectral Pattern of Unifloral Honeys Using Aquaphotomics. Molecules 2022, 27, 780. <https://doi.org/10.3390/molecules27030780>
  • Lorenc Zofia, Paśko Sławomir, Pakuła Anna, Teper Dariusz, Sałbut Leszek: An attempt to classify the botanical origin of honey using visible spectroscopy. J Sci Food Agric 2021, 101, 5272. <https://doi.org/10.1002/jsfa.11176>
  • Dumitrascu Catalina, Fiamegos Yiannis, de la Calle Guntiñas Maria Beatriz: Feasibility study on the use of elemental profiles to authenticate aromatic rice: the case of Basmati and Thai rice. Anal Bioanal Chem 2021, 413, 4947. <https://doi.org/10.1007/s00216-021-03455-9>
  • Belay Abera: Sheka forest biosphere reserve beekeeping practices and characteristics of Schefflera abyssinica honey, Ethiopia. Environ Dev Sustain 2021, 23, 11818. <https://doi.org/10.1007/s10668-020-01143-9>
  • Ghidotti Michele, Fiamegos Yiannis, Dumitrascu Catalina, de la Calle María Beatriz: Use of elemental profiles to verify geographical origin and botanical variety of Spanish honeys with a protected denomination of origin. Food Chemistry 2021, 342, 128350. <https://doi.org/10.1016/j.foodchem.2020.128350>
  • Huang Ta-Kang, Chuang Min-Chieh, Kung Yi, Hsieh Bo-Chuan: Impedimetric sensing of honey adulterated with high fructose corn syrup. Food Control 2021, 130, 108326. <https://doi.org/10.1016/j.foodcont.2021.108326>
  • Li Zhen, Meng Zhaozong, Haigh Arthur, Wang Ping, Gibson Andrew: Characterisation of water in honey using a microwave cylindrical cavity resonator sensor. Journal of Food Engineering 2021, 292, 110373. <https://doi.org/10.1016/j.jfoodeng.2020.110373>
  • Wirta Helena, Abrego Nerea, Miller Kirsten, Roslin Tomas, Vesterinen Eero: DNA traces the origin of honey by identifying plants, bacteria and fungi. Sci Rep 2021, 11. <https://doi.org/10.1038/s41598-021-84174-0>
  • Scripcă Laura Agripina, Amariei Sonia: The Use of Ultrasound for Preventing Honey Crystallization. Foods 2021, 10, 773. <https://doi.org/10.3390/foods10040773>
  • Přidal Antonín, Trávníček Petr, Kudělka Jan, Nedomová Šárka, Ondrušíková Sylvie, Trost Daniel, Kumbár Vojtěch: A Rheological Analysis of Biomaterial Behaviour as a Tool to Detect the Dilution of Heather Honey. Materials 2021, 14, 2472. <https://doi.org/10.3390/ma14102472>
  • Miłek Michał, Bocian Aleksandra, Kleczyńska Ewelina, Sowa Patrycja, Dżugan Małgorzata: The Comparison of Physicochemical Parameters, Antioxidant Activity and Proteins for the Raw Local Polish Honeys and Imported Honey Blends. Molecules 2021, 26, 2423. <https://doi.org/10.3390/molecules26092423>
  • Machado Alexandra M., Antunes Marília, Miguel Maria Graça, Vilas-Boas Miguel, Figueiredo Ana Cristina: Volatile Profile of Portuguese Monofloral Honeys: Significance in Botanical Origin Determination. Molecules 2021, 26, 4970. <https://doi.org/10.3390/molecules26164970>
  • Islam Md Khairul, Vinsen Kevin, Sostaric Tomislav, Lim Lee Yong, Locher Cornelia: Detection of syrup adulterants in manuka and jarrah honey using HPTLC-multivariate data analysis. PeerJ 2021, 9, e12186. <https://doi.org/10.7717/peerj.12186>
  • Liu Wen, Zhang Yuying, Li Ming, Han Donghai, Liu Wenjie: Determination of invert syrup adulterated in acacia honey by terahertz spectroscopy with different spectral features. J Sci Food Agric 2020, 100, 1913. <https://doi.org/10.1002/jsfa.10202>
  • Zdiniakova Tereza, de la Calle María Beatriz: Feasibility study about the use of element profiles determined by ED-XRF as screening method to authenticate coconut sugar commercially available. Eur Food Res Technol 2020, 246, 2101. <https://doi.org/10.1007/s00217-020-03559-z>
  • Geana Elisabeta-Irina, Ciucure Corina Teodora: Establishing authenticity of honey via comprehensive Romanian honey analysis. Food Chemistry 2020, 306, 125595. <https://doi.org/10.1016/j.foodchem.2019.125595>
  • Bobis Otilia, Moise Adela Ramona, Ballesteros Isabel, Reyes Estefanía Sánchez, Durán Silvia Sánchez, Sánchez-Sánchez José, Cruz-Quintana Sandra, Giampieri Francesca, Battino Maurizio, Alvarez-Suarez José M.: Eucalyptus honey: Quality parameters, chemical composition and health-promoting properties. Food Chemistry 2020, 325, 126870. <https://doi.org/10.1016/j.foodchem.2020.126870>
  • Qiao Jiangtao, Chen Lihong, Kong Lingjie, Dong Jie, Zhou Zhuoqiang, Zhang Hongcheng: Characteristic Components and Authenticity Evaluation of Rape, Acacia, and Linden Honey. J. Agric. Food Chem. 2020, 68, 9776. <https://doi.org/10.1021/acs.jafc.0c05070>
  • Fakhlaei Rafieh, Selamat Jinap, Khatib Alfi, Razis Ahmad Faizal Abdull, Sukor Rashidah, Ahmad Syahida, Babadi Arman Amani: The Toxic Impact of Honey Adulteration: A Review. Foods 2020, 9, 1538. <https://doi.org/10.3390/foods9111538>
  • Bodor Zsanett, Kovacs Zoltan, Rashed Mahmoud Said, Kókai Zoltán, Dalmadi István, Benedek Csilla: Sensory and Physicochemical Evaluation of Acacia and Linden Honey Adulterated with Sugar Syrup. Sensors 2020, 20, 4845. <https://doi.org/10.3390/s20174845>
  • Schwolow Sebastian, Gerhardt Natalie, Rohn Sascha, Weller Philipp: Data fusion of GC-IMS data and FT-MIR spectra for the authentication of olive oils and honeys—is it worth to go the extra mile?. Anal Bioanal Chem 2019, 411, 6005. <https://doi.org/10.1007/s00216-019-01978-w>
  • Di Rosa Ambra Rita, Leone Francesco, Cheli Federica, Chiofalo Vincenzo: Novel approach for the characterisation of Sicilian honeys based on the correlation of physico-chemical parameters and artificial senses. Italian Journal of Animal Science 2019, 18, 389. <https://doi.org/10.1080/1828051X.2018.1530962>
  • Vidakovic Knezevic S, Vranesevic J, Pelic M, Knezevic S, Jaksic S, Zivkov-Balos M, Ljubojević Pelic D: Current information levels on honey labels in Vojvodina. IOP Conf. Ser.: Earth Environ. Sci. 2019, 333, 012112. <https://doi.org/10.1088/1755-1315/333/1/012112>
  • Vranic D, Petronijevic R, Koricanac V, Djinovic Stojanovic J, Lilic S, Borovic B, Lukic M: Evaluation of Serbian black locust honey quality parameters as a contribution to confirmation of its botanical origin. IOP Conf. Ser.: Earth Environ. Sci. 2019, 333, 012113. <https://doi.org/10.1088/1755-1315/333/1/012113>
  • Sahlan Muhamad, Karwita Seffiani, Gozan Misri, Hermansyah Heri, Yohda Masafumi, Yoo Young Je, Pratami Diah Kartika: Identification and classification of honey's authenticity by attenuated total reflectance Fourier-transform infrared spectroscopy and chemometric method. Vet World 2019, 12, 1304. <https://doi.org/10.14202/vetworld.2019.1304-1310>
  • Bodor Zs., Benedek Cs., Kaszab T., Zaukuu J.-L. Zinia, Kertész I., Kovacs Z.: Classical and correlative analytical methods for origin identification of Hungarian honeys. Acta Alimentaria 2019, 48, 477. <https://doi.org/10.1556/066.2019.48.4.9>
  • Başar Başak, Özdemir Durmuş: Determination of honey adulteration with beet sugar and corn syrup using infrared spectroscopy and genetic‐algorithm‐based multivariate calibration. J Sci Food Agric 2018, 98, 5616. <https://doi.org/10.1002/jsfa.9105>
  • Pasquini Celio: Near infrared spectroscopy: A mature analytical technique with new perspectives – A review. Analytica Chimica Acta 2018, 1026, 8. <https://doi.org/10.1016/j.aca.2018.04.004>
  • Naila Aishath, Flint Steve H., Sulaiman A.Z., Ajit Azilah, Weeds Zuben: Classical and novel approaches to the analysis of honey and detection of adulterants. Food Control 2018, 90, 152. <https://doi.org/10.1016/j.foodcont.2018.02.027>
  • Liu Wen, Zhang Yuying, Yang Si, Han Donghai: Terahertz time-domain attenuated total reflection spectroscopy applied to the rapid discrimination of the botanical origin of honeys. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2018, 196, 123. <https://doi.org/10.1016/j.saa.2018.02.009>
  • Zhou Xiaoteng, Taylor Mark Patrick, Salouros Helen, Prasad Shiva: Authenticity and geographic origin of global honeys determined using carbon isotope ratios and trace elements. Sci Rep 2018, 8. <https://doi.org/10.1038/s41598-018-32764-w>
  • Veloso Ana C. A., Sousa Mara E. B. C., Estevinho Leticia, Dias Luís G., Peres António M.: Honey Evaluation Using Electronic Tongues: An Overview. Chemosensors 2018, 6, 28. <https://doi.org/10.3390/chemosensors6030028>
  • Mura-Mészáros Anna, Magyar Donát: Fungal Honeydew Elements as Potential Indicators of the Botanical and Geographical Origin of Honeys. Food Anal. Methods 2017, 10, 3079. <https://doi.org/10.1007/s12161-017-0862-x>
  • Li Shuifang, Zhang Xin, Shan Yang, Su Donglin, Ma Qiang, Wen Ruizhi, Li Jiaojuan: Qualitative and quantitative detection of honey adulterated with high-fructose corn syrup and maltose syrup by using near-infrared spectroscopy. Food Chemistry 2017, 218, 231. <https://doi.org/10.1016/j.foodchem.2016.08.105>
  • Pita-Calvo Consuelo, Guerra-Rodríguez María Esther, Vázquez Manuel: Analytical Methods Used in the Quality Control of Honey. J. Agric. Food Chem. 2017, 65, 690. <https://doi.org/10.1021/acs.jafc.6b04776>
  • Milojković Opsenica Dušanka, Lušić Dražen, Tešić Živoslav: Modern analytical techniques in the assessment of the authenticity of Serbian honey / Moderne analitičke tehnike u procjeni izvornosti meda iz Srbije. Archives of Industrial Hygiene and Toxicology 2015, 66. <https://doi.org/10.1515/aiht-2015-66-2721>
Crossref Cited-by Linking logo