Acta Vet. Brno 2014, 83: 85-102
https://doi.org/10.2754/avb201483S10S85
Adulteration of honey and available methods for detection – a review
Crossref Cited-by Linking
- Murr J., Brockmeyer J.: Honigauthentizität – Methodischer Ansatz für den Nachweis von unreifem Honig mittels Proteinanalytik. Lebensmittelchemie 2023, 77. <https://doi.org/10.1002/lemi.202352119>
- Robert Ikedi I. O., Birech Z., Kaniu M. I.: Rapid Assessment of Molasses Adulterated Honey Using Laser Raman Spectroscopy and Principal Component Analysis. Food Anal. Methods 2023. <https://doi.org/10.1007/s12161-023-02538-w>
- Schievano Elisabetta, Piana Lucia, Tessari Marco: Automatic NMR-based protocol for assessment of honey authenticity. Food Chemistry 2023, 420, 136094. <https://doi.org/10.1016/j.foodchem.2023.136094>
- Biswas Anisha, Hazra Sudipta Kumar, Chaudhari Sachin R.: Detection of barley malt syrup as an adulterant in honey by 1H NMR profile. Food Chemistry 2023, 429, 136842. <https://doi.org/10.1016/j.foodchem.2023.136842>
- Patel Hemraj Bhai, Nirala A.K.: Assessment of adulteration in honey by artificial sweeteners using dynamic laser speckle technique. Optik 2023, 289, 171264. <https://doi.org/10.1016/j.ijleo.2023.171264>
- Yücel Pelin, Güçlü Hülya, Mert Yüksel, Yalçın Füsun, Ocak Sema Bilge: Detection of adulteration using statistical methods over carbon isotope ratios in carob, grape, fig and mulberry pekmez. Journal of Food Composition and Analysis 2023, 115, 104979. <https://doi.org/10.1016/j.jfca.2022.104979>
- Bodor Zsanett, Benedek Csilla, Behling Hermann, Kovacs Zoltan: Fusion of electronic tongue and NIRS for the detection of heat treatment of honey. LWT 2023, 186, 115219. <https://doi.org/10.1016/j.lwt.2023.115219>
- Wójcik Szymon, Ciepiela Filip, Jakubowska Małgorzata: Computer vision analysis of sample colors versus quadruple-disk iridium-platinum voltammetric e-tongue for recognition of natural honey adulteration. Measurement 2023, 209, 112514. <https://doi.org/10.1016/j.measurement.2023.112514>
- Jin Qi, Meng Zhaozong, Chen Zhijun, Li Zhen: Review of scientific instruments: Evaluation of adulteration in honey using a microwave planar resonator sensor. Review of Scientific Instruments 2023, 94. <https://doi.org/10.1063/5.0166005>
- Přidal Antonín, Musila Jan, Svoboda Jiří: Condition and Honey Productivity of Honeybee Colonies Depending on Type of Supplemental Feed for Overwintering. Animals 2023, 13, 323. <https://doi.org/10.3390/ani13030323>
- Bodor Zsanett, Majadi Mariem, Benedek Csilla, Zaukuu John-Lewis Zinia, Veresné Bálint Márta, Csajbókné Csobod Éva, Kovacs Zoltan: Detection of Low-Level Adulteration of Hungarian Honey Using near Infrared Spectroscopy. Chemosensors 2023, 11, 89. <https://doi.org/10.3390/chemosensors11020089>
- Raweh Hael S. A., Badjah-Hadj-Ahmed Ahmed Yacine, Iqbal Javaid, Alqarni Abdulaziz S.: Physicochemical Composition of Local and Imported Honeys Associated with Quality Standards. Foods 2023, 12, 2181. <https://doi.org/10.3390/foods12112181>
- Tomczyk Monika, Czerniecka-Kubicka Anna, Miłek Michał, Sidor Ewelina, Dżugan Małgorzata: Tracking of Thermal, Physicochemical, and Biological Parameters of a Long-Term Stored Honey Artificially Adulterated with Sugar Syrups. Molecules 2023, 28, 1736. <https://doi.org/10.3390/molecules28041736>
- Ali Hina, Rafique Khalid, Ullah Rahat, Saleem M., Ahmad Iftikhar: Classification of Sidr honey and detection of sugar adulteration using right angle fluorescence spectroscopy and chemometrics. Eur Food Res Technol 2022, 248, 1823. <https://doi.org/10.1007/s00217-022-04008-9>
- Sajadi Maryam, Rasuli Reza: A Facile Approach to Distinct Unusual Sucrose in Honey by Titanium Oxide Nanoparticles. Plasmonics 2022, 17, 65. <https://doi.org/10.1007/s11468-021-01490-x>
- Rachineni Kavitha, Rao Kakita Veera Mohana, Awasthi Neeraj Praphulla, Shirke Vrushali Siddesh, Hosur Ramakrishna V., Chandra Shukla Satish: Identifying type of sugar adulterants in honey: Combined application of NMR spectroscopy and supervised machine learning classification. Current Research in Food Science 2022, 5, 272. <https://doi.org/10.1016/j.crfs.2022.01.008>
- Yong Chin-Hong, Muhammad Syahidah Akmal, Aziz Fatimatuzzahra' Abd, Nasir Fatin Ilyani, Mustafa Mohd Zulkifli, Ibrahim Baharudin, Kelly Simon D., Cannavan Andrew, Seow Eng-Keng: Detecting adulteration of stingless bee honey using untargeted 1H NMR metabolomics with chemometrics. Food Chemistry 2022, 368, 130808. <https://doi.org/10.1016/j.foodchem.2021.130808>
- Svalova Tatiana S., Saigushkina Anna A., Verbitskiy Egor V., Chistyakov Konstantin A., Varaksin Mikhail V., Rusinov Gennady L., Charushin Valery N., Kozitsina Alisa N.: Rapid and sensitive determination of nitrobenzene in solutions and commercial honey samples using a screen-printed electrode modified by 1,3-/1,4-diazines. Food Chemistry 2022, 372, 131279. <https://doi.org/10.1016/j.foodchem.2021.131279>
- Zhang Guyang, Abdulla Waleed: On honey authentication and adulterant detection techniques. Food Control 2022, 138, 108992. <https://doi.org/10.1016/j.foodcont.2022.108992>
- Nobari Moghaddam Hanieh, Tamiji Zahra, Akbari Lakeh Mahsa, Khoshayand Mohammad Reza, Haji Mahmoodi Mannan: Multivariate analysis of food fraud: A review of NIR based instruments in tandem with chemometrics. Journal of Food Composition and Analysis 2022, 107, 104343. <https://doi.org/10.1016/j.jfca.2021.104343>
- Liu Zhaolong, Xu Tianyang, Zhou Jinhui, Chen Lanzhen: Application of stable isotopic and elemental composition combined with random forest algorithm for the botanical classification of Chinese honey. Journal of Food Composition and Analysis 2022, 110, 104565. <https://doi.org/10.1016/j.jfca.2022.104565>
- Truong Hien Thi Dieu, Reddy Pullanagari, Reis Marlon M., Archer Richard: Quality assessment of mānuka honeys using non-invasive Near Infrared systems. Journal of Food Composition and Analysis 2022, 114, 104780. <https://doi.org/10.1016/j.jfca.2022.104780>
- Akyıldız İsmail Emir, Erdem Özge, Raday Sinem, Daştan Tuğçe, Acar Sezer, Uzunöner Dilek, Düz Gamze, Damarlı Emel: Elucidating the false positive tendency at AOAC 998.12 C-4 sugar test for pine honey samples: Modified sample preparation method for accurate δ13C measurement of honey proteome. Journal of Food Composition and Analysis 2022, 114, 104787. <https://doi.org/10.1016/j.jfca.2022.104787>
- Walker M. J., Cowen S., Gray K., Hancock P., Burns D. T.: Honey authenticity: the opacity of analytical reports - part 1 defining the problem. npj Sci Food 2022, 6. <https://doi.org/10.1038/s41538-022-00126-6>
- Walker M. J., Cowen S., Gray K., Hancock P., Burns D. T.: Honey authenticity: the opacity of analytical reports—part 2, forensic evaluative reporting as a potential solution. npj Sci Food 2022, 6. <https://doi.org/10.1038/s41538-022-00127-5>
- Hu Shuhan, Li Hongyi, Chen Chen, Chen Cheng, Zhao Deyi, Dong Bingyu, Lv Xiaoyi, Zhang Kai, Xie Yi: Raman spectroscopy combined with machine learning algorithms to detect adulterated Suichang native honey. Sci Rep 2022, 12. <https://doi.org/10.1038/s41598-022-07222-3>
- Dumancas Gerard G., Setijadi Catherine, Dufour Ben, Aglobo Jastine, Carisma Marjorie S., Bello Ghalib A., Dalisay Doralyn S., Saludes Jonel P.: Comparison of Genetic and Non-genetic Algorithm Partial Least Squares for Sugar Quantification in Philippine Honeys. Analytical Letters 2022, 55, 1901. <https://doi.org/10.1080/00032719.2022.2033985>
- Akinwande Kayode Lawrence, Oladapo Ajayi Joshua: Aberrant in physicochemical properties, functional health and medicinal grades of honeys from different sales outlets in Southwest Nigeria. Bull Natl Res Cent 2022, 46. <https://doi.org/10.1186/s42269-022-00873-2>
- Baxi Vikrant K., Gadani Deepak H., Rana Vipin A.: Dielectric properties of honey adulterated by sugar syrup. International Journal of Food Engineering 2022, 18, 603. <https://doi.org/10.1515/ijfe-2022-0063>
- Wójcik Szymon, Ciepiela Filip, Jakubowska Małgorzata: Deep Learning and Smartphone-Assisted Color Recognition of Honey Adulterated Samples Versus Quadruple-Disk Iridium-Platinum Voltammetric Sensor Experiments. SSRN Journal 2022. <https://doi.org/10.2139/ssrn.4167483>
- Singh Bipin, Barman Sanmitra: Rapid and Precise Discrimination between Pure and Adulterated Commercial Indian Honey Brands using FTIR Spectroscopy and Principal Component Analysis. CNF 2022, 18, 780. <https://doi.org/10.2174/1573401318666220509214603>
- Martinello Marianna, Stella Roberto, Baggio Alessandra, Biancotto Giancarlo, Mutinelli Franco: LC-HRMS-Based Non-Targeted Metabolomics for the Assessment of Honey Adulteration with Sugar Syrups: A Preliminary Study. Metabolites 2022, 12, 985. <https://doi.org/10.3390/metabo12100985>
- Bodor Zsanett, Benedek Csilla, Aouadi Balkis, Zsom-Muha Viktoria, Kovacs Zoltan: Revealing the Effect of Heat Treatment on the Spectral Pattern of Unifloral Honeys Using Aquaphotomics. Molecules 2022, 27, 780. <https://doi.org/10.3390/molecules27030780>
- Lorenc Zofia, Paśko Sławomir, Pakuła Anna, Teper Dariusz, Sałbut Leszek: An attempt to classify the botanical origin of honey using visible spectroscopy. J Sci Food Agric 2021, 101, 5272. <https://doi.org/10.1002/jsfa.11176>
- Dumitrascu Catalina, Fiamegos Yiannis, de la Calle Guntiñas Maria Beatriz: Feasibility study on the use of elemental profiles to authenticate aromatic rice: the case of Basmati and Thai rice. Anal Bioanal Chem 2021, 413, 4947. <https://doi.org/10.1007/s00216-021-03455-9>
- Belay Abera: Sheka forest biosphere reserve beekeeping practices and characteristics of Schefflera abyssinica honey, Ethiopia. Environ Dev Sustain 2021, 23, 11818. <https://doi.org/10.1007/s10668-020-01143-9>
- Ghidotti Michele, Fiamegos Yiannis, Dumitrascu Catalina, de la Calle María Beatriz: Use of elemental profiles to verify geographical origin and botanical variety of Spanish honeys with a protected denomination of origin. Food Chemistry 2021, 342, 128350. <https://doi.org/10.1016/j.foodchem.2020.128350>
- Huang Ta-Kang, Chuang Min-Chieh, Kung Yi, Hsieh Bo-Chuan: Impedimetric sensing of honey adulterated with high fructose corn syrup. Food Control 2021, 130, 108326. <https://doi.org/10.1016/j.foodcont.2021.108326>
- Li Zhen, Meng Zhaozong, Haigh Arthur, Wang Ping, Gibson Andrew: Characterisation of water in honey using a microwave cylindrical cavity resonator sensor. Journal of Food Engineering 2021, 292, 110373. <https://doi.org/10.1016/j.jfoodeng.2020.110373>
- Wirta Helena, Abrego Nerea, Miller Kirsten, Roslin Tomas, Vesterinen Eero: DNA traces the origin of honey by identifying plants, bacteria and fungi. Sci Rep 2021, 11. <https://doi.org/10.1038/s41598-021-84174-0>
- Scripcă Laura Agripina, Amariei Sonia: The Use of Ultrasound for Preventing Honey Crystallization. Foods 2021, 10, 773. <https://doi.org/10.3390/foods10040773>
- Přidal Antonín, Trávníček Petr, Kudělka Jan, Nedomová Šárka, Ondrušíková Sylvie, Trost Daniel, Kumbár Vojtěch: A Rheological Analysis of Biomaterial Behaviour as a Tool to Detect the Dilution of Heather Honey. Materials 2021, 14, 2472. <https://doi.org/10.3390/ma14102472>
- Miłek Michał, Bocian Aleksandra, Kleczyńska Ewelina, Sowa Patrycja, Dżugan Małgorzata: The Comparison of Physicochemical Parameters, Antioxidant Activity and Proteins for the Raw Local Polish Honeys and Imported Honey Blends. Molecules 2021, 26, 2423. <https://doi.org/10.3390/molecules26092423>
- Machado Alexandra M., Antunes Marília, Miguel Maria Graça, Vilas-Boas Miguel, Figueiredo Ana Cristina: Volatile Profile of Portuguese Monofloral Honeys: Significance in Botanical Origin Determination. Molecules 2021, 26, 4970. <https://doi.org/10.3390/molecules26164970>
- Islam Md Khairul, Vinsen Kevin, Sostaric Tomislav, Lim Lee Yong, Locher Cornelia: Detection of syrup adulterants in manuka and jarrah honey using HPTLC-multivariate data analysis. PeerJ 2021, 9, e12186. <https://doi.org/10.7717/peerj.12186>
- Liu Wen, Zhang Yuying, Li Ming, Han Donghai, Liu Wenjie: Determination of invert syrup adulterated in acacia honey by terahertz spectroscopy with different spectral features. J Sci Food Agric 2020, 100, 1913. <https://doi.org/10.1002/jsfa.10202>
- Zdiniakova Tereza, de la Calle María Beatriz: Feasibility study about the use of element profiles determined by ED-XRF as screening method to authenticate coconut sugar commercially available. Eur Food Res Technol 2020, 246, 2101. <https://doi.org/10.1007/s00217-020-03559-z>
- Geana Elisabeta-Irina, Ciucure Corina Teodora: Establishing authenticity of honey via comprehensive Romanian honey analysis. Food Chemistry 2020, 306, 125595. <https://doi.org/10.1016/j.foodchem.2019.125595>
- Bobis Otilia, Moise Adela Ramona, Ballesteros Isabel, Reyes Estefanía Sánchez, Durán Silvia Sánchez, Sánchez-Sánchez José, Cruz-Quintana Sandra, Giampieri Francesca, Battino Maurizio, Alvarez-Suarez José M.: Eucalyptus honey: Quality parameters, chemical composition and health-promoting properties. Food Chemistry 2020, 325, 126870. <https://doi.org/10.1016/j.foodchem.2020.126870>
- Qiao Jiangtao, Chen Lihong, Kong Lingjie, Dong Jie, Zhou Zhuoqiang, Zhang Hongcheng: Characteristic Components and Authenticity Evaluation of Rape, Acacia, and Linden Honey. J. Agric. Food Chem. 2020, 68, 9776. <https://doi.org/10.1021/acs.jafc.0c05070>
- Fakhlaei Rafieh, Selamat Jinap, Khatib Alfi, Razis Ahmad Faizal Abdull, Sukor Rashidah, Ahmad Syahida, Babadi Arman Amani: The Toxic Impact of Honey Adulteration: A Review. Foods 2020, 9, 1538. <https://doi.org/10.3390/foods9111538>
- Bodor Zsanett, Kovacs Zoltan, Rashed Mahmoud Said, Kókai Zoltán, Dalmadi István, Benedek Csilla: Sensory and Physicochemical Evaluation of Acacia and Linden Honey Adulterated with Sugar Syrup. Sensors 2020, 20, 4845. <https://doi.org/10.3390/s20174845>
- Schwolow Sebastian, Gerhardt Natalie, Rohn Sascha, Weller Philipp: Data fusion of GC-IMS data and FT-MIR spectra for the authentication of olive oils and honeys—is it worth to go the extra mile?. Anal Bioanal Chem 2019, 411, 6005. <https://doi.org/10.1007/s00216-019-01978-w>
- Di Rosa Ambra Rita, Leone Francesco, Cheli Federica, Chiofalo Vincenzo: Novel approach for the characterisation of Sicilian honeys based on the correlation of physico-chemical parameters and artificial senses. Italian Journal of Animal Science 2019, 18, 389. <https://doi.org/10.1080/1828051X.2018.1530962>
- Vidakovic Knezevic S, Vranesevic J, Pelic M, Knezevic S, Jaksic S, Zivkov-Balos M, Ljubojević Pelic D: Current information levels on honey labels in Vojvodina. IOP Conf. Ser.: Earth Environ. Sci. 2019, 333, 012112. <https://doi.org/10.1088/1755-1315/333/1/012112>
- Vranic D, Petronijevic R, Koricanac V, Djinovic Stojanovic J, Lilic S, Borovic B, Lukic M: Evaluation of Serbian black locust honey quality parameters as a contribution to confirmation of its botanical origin. IOP Conf. Ser.: Earth Environ. Sci. 2019, 333, 012113. <https://doi.org/10.1088/1755-1315/333/1/012113>
- Sahlan Muhamad, Karwita Seffiani, Gozan Misri, Hermansyah Heri, Yohda Masafumi, Yoo Young Je, Pratami Diah Kartika: Identification and classification of honey's authenticity by attenuated total reflectance Fourier-transform infrared spectroscopy and chemometric method. Vet World 2019, 12, 1304. <https://doi.org/10.14202/vetworld.2019.1304-1310>
- Bodor Zs., Benedek Cs., Kaszab T., Zaukuu J.-L. Zinia, Kertész I., Kovacs Z.: Classical and correlative analytical methods for origin identification of Hungarian honeys. Acta Alimentaria 2019, 48, 477. <https://doi.org/10.1556/066.2019.48.4.9>
- Başar Başak, Özdemir Durmuş: Determination of honey adulteration with beet sugar and corn syrup using infrared spectroscopy and genetic‐algorithm‐based multivariate calibration. J Sci Food Agric 2018, 98, 5616. <https://doi.org/10.1002/jsfa.9105>
- Pasquini Celio: Near infrared spectroscopy: A mature analytical technique with new perspectives – A review. Analytica Chimica Acta 2018, 1026, 8. <https://doi.org/10.1016/j.aca.2018.04.004>
- Naila Aishath, Flint Steve H., Sulaiman A.Z., Ajit Azilah, Weeds Zuben: Classical and novel approaches to the analysis of honey and detection of adulterants. Food Control 2018, 90, 152. <https://doi.org/10.1016/j.foodcont.2018.02.027>
- Liu Wen, Zhang Yuying, Yang Si, Han Donghai: Terahertz time-domain attenuated total reflection spectroscopy applied to the rapid discrimination of the botanical origin of honeys. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2018, 196, 123. <https://doi.org/10.1016/j.saa.2018.02.009>
- Zhou Xiaoteng, Taylor Mark Patrick, Salouros Helen, Prasad Shiva: Authenticity and geographic origin of global honeys determined using carbon isotope ratios and trace elements. Sci Rep 2018, 8. <https://doi.org/10.1038/s41598-018-32764-w>
- Veloso Ana, Sousa Mara, Estevinho Leticia, Dias Luís, Peres António: Honey Evaluation Using Electronic Tongues: An Overview. Chemosensors 2018, 6, 28. <https://doi.org/10.3390/chemosensors6030028>
- Mura-Mészáros Anna, Magyar Donát: Fungal Honeydew Elements as Potential Indicators of the Botanical and Geographical Origin of Honeys. Food Anal. Methods 2017, 10, 3079. <https://doi.org/10.1007/s12161-017-0862-x>
- Li Shuifang, Zhang Xin, Shan Yang, Su Donglin, Ma Qiang, Wen Ruizhi, Li Jiaojuan: Qualitative and quantitative detection of honey adulterated with high-fructose corn syrup and maltose syrup by using near-infrared spectroscopy. Food Chemistry 2017, 218, 231. <https://doi.org/10.1016/j.foodchem.2016.08.105>
- Pita-Calvo Consuelo, Guerra-Rodríguez María Esther, Vázquez Manuel: Analytical Methods Used in the Quality Control of Honey. J. Agric. Food Chem. 2017, 65, 690. <https://doi.org/10.1021/acs.jafc.6b04776>
- Milojković Opsenica Dušanka, Lušić Dražen, Tešić Živoslav: Modern analytical techniques in the assessment of the authenticity of Serbian honey / Moderne analitičke tehnike u procjeni izvornosti meda iz Srbije. Archives of Industrial Hygiene and Toxicology 2015, 66. <https://doi.org/10.1515/aiht-2015-66-2721>