Acta Vet. Brno 2016, 85: 77-83
https://doi.org/10.2754/avb201685010077
Three-dimensional bone tissue substitute based on a human mesenchymal stem cell culture on a nanofiber carrier and inorganic matrix
References
1. E, Filová E, Buzgo M, Prosecká E, Rampichová M, Nečas A, Nooeaid P, Boccaccini AR 2014: Functionalized nanofibers as drug-delivery systems for osteochondral regeneration. Nanomedicine 9: 1083-1094
<https://doi.org/10.2217/nnm.14.57>
2. JV, Carvalho PP, Best SM 2015: Electrospinning of Bioinspired Polymer Scaffolds. Adv Exp Med Biol 881: 33-53
<https://doi.org/10.1007/978-3-319-22345-2_3>
3. Linh NT, Min YK, Lee BT 2013: Hybrid hydroxyapatite nanoparticles-loaded PCL/GE blend fibers for bone tissue engineering. J Biomater Sci Polym Ed 24: 520-538
4. S, Kumbar SG, Khan YM, Nair LS, Singh A, Krogman NR, Brown PW, Allcock HR, Laurencin CT 2009: Biodegradable polyphosphazene nanohydroxyapatite composite nanofibers: scaffolds for bone tissue engineering. J Biomed Nanotechnol 5: 69-75
<https://doi.org/10.1166/jbn.2009.032>
5. M, Nečas A, Srnec R, Janovec J, Stehlík L, Raušer P, Urbanová L, Plánka L, Jančář J, Amler E 2009: Mesenchymal stem cells in bone tissue regeneration and their application in bone defect healing. Acta Vet Brno 78: 635‑642
<https://doi.org/10.2754/avb200978040635>
6. R, Russo A, Gloria A, D’Amora U, Russo T, Panseri S, Sandri M, Tampieri A, Marcacci M, Dediu VA, Wilde CJ, Ambrosio L 2015: Towards the design of 3D fiber-deposited poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite magnetic scaffolds for bone regeneration. J Biomed Nanotechnol 11: 1236-1246
<https://doi.org/10.1166/jbn.2015.2065>
7. S, Ferrand A, Palomares CM, Hébraud A, Stoltz JF, Mainard D, Schlatter G, Benkirane-Jessel N 2012: Electrospun nanofibrous 3D scaffold for bone tissue engineering. Biomed Mater Eng 22: 137-141
8. S, Morand D, Clauss F, Huck O, Stoltz JF, Lutz JC, Gottenberg JE, Benkirane-Jessel N, Keller L, Fioretti F 2015: Nanostructured thick 3D nanofibrous scaffold can induce bone. Biomed Mater Eng 25(1 Suppl): 79-85
9. RA, Sadiasa A, Seo HS, Lee BT 2014: Biphasic calcium phosphate loading on polycaprolactone/poly(lacto-co-glycolic acid) membranes for improved tensile strength, in vitro biocompatibility, and in vivo tissue regeneration. J Biomater Appl 28: 1164-1179
<https://doi.org/10.1177/0885328213500544>
10. KM, Rutledge GC 2012: Free surface electrospinning from a wire electrode. Chem Eng J 183: 492-503
<https://doi.org/10.1016/j.cej.2011.12.045>
11. AK, Mukundan S, Karaca E, Dolatshahi-Pirouz A, Patel A, Rangarajan K, Mihaila SM, Iviglia G, Zhang H, Khademhosseini A 2014: Nanoclay-enriched poly(ɛ-caprolactone) electrospun scaffolds for osteogenic differentiation of human mesenchymal stem cells. Tissue Eng Part A 20: 15-16
<https://doi.org/10.1089/ten.tea.2013.0281>
12. C, Venugopal J, Ravichandran R, Sundarrajan S, Suganya S, Ramakrishna S 2013: Mimicking nanofibrous hybrid bone substitute for mesenchymal stem cells differentiation into osteogenesis. Macromol Biosci 13: 696-706
<https://doi.org/10.1002/mabi.201200435>
13. Q, Li X, Ding Q, Li D, Zhao Q, Xie P, Tang X, Luo F, Qian Z 2013: Preparation and characterization of poly(pluronic-co-L-lactide) nanofibers for tissue engineering. Int J Biol Macromol 58: 79-86
<https://doi.org/10.1016/j.ijbiomac.2013.03.061>
14. KA, Wilson LF, Buckland T 2007: Comparative performance of three ceramic bone graft substitutes. Spine J 7: 475-490
<https://doi.org/10.1016/j.spinee.2006.07.017>
15. YM, Choi DY, Jung SC, Kim BH 2015: Characteristics of plasma treated electrospun polycaprolactone (PCL) nanofiber scaffold for bone tissue engineering. J Nanosci Nanotechnol 15: 192-195
<https://doi.org/10.1166/jnn.2015.8372>
16. S, Huang C, Yang H, Zhang X 2013: Electrospun fibers as a scaffolding platform for bone tissue repair. J Orthop Res 31: 1382-1389
<https://doi.org/10.1002/jor.22367>
17. A, Pinho ED, Correlo VM, Faria S, Marques AP, Reis RL, Neves NM 2010: Biodegradable nanofibers-reinforced microfibrous composite scaffolds for bone tissue engineering. Tissue Eng Part A 16: 3599-3609
<https://doi.org/10.1089/ten.tea.2009.0779>
18. GF, Nitto H, Boehm CA, Easley KA 2001: Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J Orthop Res 19: 117-125
<https://doi.org/10.1016/S0736-0266(00)00010-3>
19. A, Proks P, Urbanová L, Srnec R, Stehlík L, Crha M, Raušer P, Plánka L, Amler E, Vojtová L, Jančář J 2010: Healing of large segmental bone defect after implantation of autogenous cancellous bone graft in comparison with hydroxyapatite and 0.5% collagen scaffold in combination with mesenchymal stem cells. Acta Vet Brno 79: 607-612
<https://doi.org/10.2754/avb201079040607>
20. K, Zajdlova M, Suchy T, Hadraba D, Lopot F, Zaloudkova M, Douglas TE, Munzarova M, Juklickova M, Stranska D, Kubies D, Schaubroeck D, Wille S, Balcaen L, Jarosova M, Kozak H, Kromka A, Svindrych Z, Lisa V, Balik K, Bacakova L 2014: Polylactide nanofibers with hydroxyapatite as growth substrates for osteoblast-like cells. J Biomed Mater Res A 102: 3918-3930
<https://doi.org/10.1002/jbm.a.35061>
21. M, Douglas TE, Novotna K, Kromka A, Brady MA, Renzing A, Voss E, Jarosova M, Palatinus L, Tesarek P, Ryparova P, Lisa V, dos Santos AM, Warnke PH, Bacakova L 2012: Nanofibrous poly(lactide-co-glycolide) membranes loaded with diamond nanoparticles as promising substrates for bone tissue engineering. Int J Nanomedicine 7: 1931-1951
22. E, Rampichova M, Vojtova L, Tvrdik D, Melcakova S, Juhasova J, Plencner M, Jakubova R, Jancar J, Necas A, Kochova P, Klepacek J, Tonar Z, Amler E 2011: Optimized conditions for mesenchymal stem cells to differentiate into osteoblasts on a collagen/hydroxyapatite matrix. Journal of Biomedical Materials Research Part A 99A: 307-315
<https://doi.org/10.1002/jbm.a.33189>
23. Prosecká E, Buzgo M, Rampichová M, Kocourek T, Kochová P, Vysloužilová L, Tvrdík D, Jelínek M, Lukáš D, Amler E 2012: Thin-layer hydroxyapatite deposition on a nanofiber surface stimulates mesenchymal stem cell proliferation and their differentiation into osteoblasts. J Biomed Biotechnol 428503. Epub Jan 29, 2012
24. NG, Shin CS, Shin H 2013: Current approaches to electrospun nanofibers for tissue engineering. Biomed Mater 8: 014102
<https://doi.org/10.1088/1748-6041/8/1/014102>
25. MT, Martins A, Dias IR, Viegas CA, Neves NM, Gomes ME, Reis RL 2012: Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering. J Tissue Eng Regen Med 6: e24-30
<https://doi.org/10.1002/term.499>
26. CL, Sanchez EM, Zavaglia CA, Granja PL 2012: Biocompatibility and biodegradation of polycaprolactone-sebacic acid blended gels. J Biomed Mater Res A: 100: 243-251
<https://doi.org/10.1002/jbm.a.33272>
27. KT, Chennazhi KP, Nair SV, Jayakumar R 2013: High thick layer-by-layer 3D multiscale fibrous scaffolds for enhanced cell infiltration and its potential in tissue engineering. J Biomed Nanotechnol 9: 2117-2122
<https://doi.org/10.1166/jbn.2013.1702>
28. PK, Moutos FT, Kusanagi A, Moretti MG, Diekman BO, Welter JF, Caplan AI, Guilak F, Freed LE 2010: In vitro generation of mechanically functional cartilage grafts based on adult human stem cells and 3D-woven poly(epsilon-caprolactone) scaffolds. Biomaterials 31: 2193-2200
<https://doi.org/10.1016/j.biomaterials.2009.11.092>
29. JR, Low S, Choon AT, Kumar AB, Ramakrishna S 2008: Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Artif Organs 32: 388-397
<https://doi.org/10.1111/j.1525-1594.2008.00557.x>
30. J, Low S, Choon AT, Sampath Kumar TS, Ramakrishna S 2008: Mineralization of osteoblasts with electrospun collagen/hydroxyapatite nanofibers. J Mater Sci Mater Med 19: 2039-2046
<https://doi.org/10.1007/s10856-007-3289-x>
31. J, Prabhakaran MP, Zhang Y, Low S, Choon AT, Ramakrishna S 2010: Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering. Philos Trans A Math Phys Eng Sci 28: 2065-2081
<https://doi.org/10.1098/rsta.2010.0012>

