Acta Vet. Brno 2016, 85: 77-83
https://doi.org/10.2754/avb201685010077
Three-dimensional bone tissue substitute based on a human mesenchymal stem cell culture on a nanofiber carrier and inorganic matrix
References
1. 2014: Functionalized nanofibers as drug-delivery systems for osteochondral regeneration. Nanomedicine 9: 1083-1094
< E, Filová E, Buzgo M, Prosecká E, Rampichová M, Nečas A, Nooeaid P, Boccaccini AR https://doi.org/10.2217/nnm.14.57>
2. 2015: Electrospinning of Bioinspired Polymer Scaffolds. Adv Exp Med Biol 881: 33-53
< JV, Carvalho PP, Best SM https://doi.org/10.1007/978-3-319-22345-2_3>
3. 2013: Hybrid hydroxyapatite nanoparticles-loaded PCL/GE blend fibers for bone tissue engineering. J Biomater Sci Polym Ed 24: 520-538
Linh NT, Min YK, Lee BT
4. 2009: Biodegradable polyphosphazene nanohydroxyapatite composite nanofibers: scaffolds for bone tissue engineering. J Biomed Nanotechnol 5: 69-75
< S, Kumbar SG, Khan YM, Nair LS, Singh A, Krogman NR, Brown PW, Allcock HR, Laurencin CT https://doi.org/10.1166/jbn.2009.032>
5. 2009: Mesenchymal stem cells in bone tissue regeneration and their application in bone defect healing. Acta Vet Brno 78: 635‑642
< M, Nečas A, Srnec R, Janovec J, Stehlík L, Raušer P, Urbanová L, Plánka L, Jančář J, Amler E https://doi.org/10.2754/avb200978040635>
6. 2015: Towards the design of 3D fiber-deposited poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite magnetic scaffolds for bone regeneration. J Biomed Nanotechnol 11: 1236-1246
< R, Russo A, Gloria A, D’Amora U, Russo T, Panseri S, Sandri M, Tampieri A, Marcacci M, Dediu VA, Wilde CJ, Ambrosio L https://doi.org/10.1166/jbn.2015.2065>
7. 2012: Electrospun nanofibrous 3D scaffold for bone tissue engineering. Biomed Mater Eng 22: 137-141
S, Ferrand A, Palomares CM, Hébraud A, Stoltz JF, Mainard D, Schlatter G, Benkirane-Jessel N
8. 2015: Nanostructured thick 3D nanofibrous scaffold can induce bone. Biomed Mater Eng 25(1 Suppl): 79-85
S, Morand D, Clauss F, Huck O, Stoltz JF, Lutz JC, Gottenberg JE, Benkirane-Jessel N, Keller L, Fioretti F
9. 2014: Biphasic calcium phosphate loading on polycaprolactone/poly(lacto-co-glycolic acid) membranes for improved tensile strength, in vitro biocompatibility, and in vivo tissue regeneration. J Biomater Appl 28: 1164-1179
< RA, Sadiasa A, Seo HS, Lee BT https://doi.org/10.1177/0885328213500544>
10. 2012: Free surface electrospinning from a wire electrode. Chem Eng J 183: 492-503
< KM, Rutledge GC https://doi.org/10.1016/j.cej.2011.12.045>
11. 2014: Nanoclay-enriched poly(ɛ-caprolactone) electrospun scaffolds for osteogenic differentiation of human mesenchymal stem cells. Tissue Eng Part A 20: 15-16
< AK, Mukundan S, Karaca E, Dolatshahi-Pirouz A, Patel A, Rangarajan K, Mihaila SM, Iviglia G, Zhang H, Khademhosseini A https://doi.org/10.1089/ten.tea.2013.0281>
12. 2013: Mimicking nanofibrous hybrid bone substitute for mesenchymal stem cells differentiation into osteogenesis. Macromol Biosci 13: 696-706
< C, Venugopal J, Ravichandran R, Sundarrajan S, Suganya S, Ramakrishna S https://doi.org/10.1002/mabi.201200435>
13. 2013: Preparation and characterization of poly(pluronic-co-L-lactide) nanofibers for tissue engineering. Int J Biol Macromol 58: 79-86
< Q, Li X, Ding Q, Li D, Zhao Q, Xie P, Tang X, Luo F, Qian Z https://doi.org/10.1016/j.ijbiomac.2013.03.061>
14. 2007: Comparative performance of three ceramic bone graft substitutes. Spine J 7: 475-490
< KA, Wilson LF, Buckland T https://doi.org/10.1016/j.spinee.2006.07.017>
15. 2015: Characteristics of plasma treated electrospun polycaprolactone (PCL) nanofiber scaffold for bone tissue engineering. J Nanosci Nanotechnol 15: 192-195
< YM, Choi DY, Jung SC, Kim BH https://doi.org/10.1166/jnn.2015.8372>
16. 2013: Electrospun fibers as a scaffolding platform for bone tissue repair. J Orthop Res 31: 1382-1389
< S, Huang C, Yang H, Zhang X https://doi.org/10.1002/jor.22367>
17. 2010: Biodegradable nanofibers-reinforced microfibrous composite scaffolds for bone tissue engineering. Tissue Eng Part A 16: 3599-3609
< A, Pinho ED, Correlo VM, Faria S, Marques AP, Reis RL, Neves NM https://doi.org/10.1089/ten.tea.2009.0779>
18. 2001: Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J Orthop Res 19: 117-125
< GF, Nitto H, Boehm CA, Easley KA https://doi.org/10.1016/S0736-0266(00)00010-3>
19. 2010: Healing of large segmental bone defect after implantation of autogenous cancellous bone graft in comparison with hydroxyapatite and 0.5% collagen scaffold in combination with mesenchymal stem cells. Acta Vet Brno 79: 607-612
< A, Proks P, Urbanová L, Srnec R, Stehlík L, Crha M, Raušer P, Plánka L, Amler E, Vojtová L, Jančář J https://doi.org/10.2754/avb201079040607>
20. 2014: Polylactide nanofibers with hydroxyapatite as growth substrates for osteoblast-like cells. J Biomed Mater Res A 102: 3918-3930
< K, Zajdlova M, Suchy T, Hadraba D, Lopot F, Zaloudkova M, Douglas TE, Munzarova M, Juklickova M, Stranska D, Kubies D, Schaubroeck D, Wille S, Balcaen L, Jarosova M, Kozak H, Kromka A, Svindrych Z, Lisa V, Balik K, Bacakova L https://doi.org/10.1002/jbm.a.35061>
21. 2012: Nanofibrous poly(lactide-co-glycolide) membranes loaded with diamond nanoparticles as promising substrates for bone tissue engineering. Int J Nanomedicine 7: 1931-1951
M, Douglas TE, Novotna K, Kromka A, Brady MA, Renzing A, Voss E, Jarosova M, Palatinus L, Tesarek P, Ryparova P, Lisa V, dos Santos AM, Warnke PH, Bacakova L
22. 2011: Optimized conditions for mesenchymal stem cells to differentiate into osteoblasts on a collagen/hydroxyapatite matrix. Journal of Biomedical Materials Research Part A 99A: 307-315
< E, Rampichova M, Vojtova L, Tvrdik D, Melcakova S, Juhasova J, Plencner M, Jakubova R, Jancar J, Necas A, Kochova P, Klepacek J, Tonar Z, Amler E https://doi.org/10.1002/jbm.a.33189>
23. Prosecká E, Buzgo M, Rampichová M, Kocourek T, Kochová P, Vysloužilová L, Tvrdík D, Jelínek M, Lukáš D, Amler E 2012: Thin-layer hydroxyapatite deposition on a nanofiber surface stimulates mesenchymal stem cell proliferation and their differentiation into osteoblasts. J Biomed Biotechnol 428503. Epub Jan 29, 2012
24. 2013: Current approaches to electrospun nanofibers for tissue engineering. Biomed Mater 8: 014102
< NG, Shin CS, Shin H https://doi.org/10.1088/1748-6041/8/1/014102>
25. 2012: Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering. J Tissue Eng Regen Med 6: e24-30
< MT, Martins A, Dias IR, Viegas CA, Neves NM, Gomes ME, Reis RL https://doi.org/10.1002/term.499>
26. 2012: Biocompatibility and biodegradation of polycaprolactone-sebacic acid blended gels. J Biomed Mater Res A: 100: 243-251
< CL, Sanchez EM, Zavaglia CA, Granja PL https://doi.org/10.1002/jbm.a.33272>
27. 2013: High thick layer-by-layer 3D multiscale fibrous scaffolds for enhanced cell infiltration and its potential in tissue engineering. J Biomed Nanotechnol 9: 2117-2122
< KT, Chennazhi KP, Nair SV, Jayakumar R https://doi.org/10.1166/jbn.2013.1702>
28. 2010: In vitro generation of mechanically functional cartilage grafts based on adult human stem cells and 3D-woven poly(epsilon-caprolactone) scaffolds. Biomaterials 31: 2193-2200
< PK, Moutos FT, Kusanagi A, Moretti MG, Diekman BO, Welter JF, Caplan AI, Guilak F, Freed LE https://doi.org/10.1016/j.biomaterials.2009.11.092>
29. 2008: Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Artif Organs 32: 388-397
< JR, Low S, Choon AT, Kumar AB, Ramakrishna S https://doi.org/10.1111/j.1525-1594.2008.00557.x>
30. 2008: Mineralization of osteoblasts with electrospun collagen/hydroxyapatite nanofibers. J Mater Sci Mater Med 19: 2039-2046
< J, Low S, Choon AT, Sampath Kumar TS, Ramakrishna S https://doi.org/10.1007/s10856-007-3289-x>
31. 2010: Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering. Philos Trans A Math Phys Eng Sci 28: 2065-2081
< J, Prabhakaran MP, Zhang Y, Low S, Choon AT, Ramakrishna S https://doi.org/10.1098/rsta.2010.0012>