Acta Vet. Brno 2018, 87: 35-45
https://doi.org/10.2754/avb201887010035
Genetically influenced resistance to stress and disease in salmonids in relation to present-day breeding practice - a short review
References
1. AquaGen 2017a: Product documentation for rainbow trout. General product presentation of AquaGenŐs rainbow trout eggs 2018. AquaGen Web site. Available at: https://aquagen.no/wp-content/uploads/2017/08/aquagen-rainbow-trout-eggs-2018.pdf. Accessed September 14, 2017
2. AquaGen 2017b: Product portfolio for rainbow trout 2018. AquaGen Web site. Available at: https://aquagen.no/en/products/trout-eggs/produktoversikt-pa-regnbueorret-2017/. Accessed September 14, 2017
3. AquaGen 2017c: Salmon eggs 2017/2018. AquaGen Web site. Available at: https://aquagen.no/wp-content/uploads/2017/08/aquagen-salmon-eggs-2017-2018.pdf. Accessed September 14, 2017
4. AquaSearch 2017: AquaSearch Web site. Available at: http://aquasearch.dk/breeding-and-innovation/breeding-programme/. Accessed September 14, 2017
5. 2011: A major effect quantitative trait locus for whirling disease resistance identified in rainbow trout (Oncorhynchus mykiss). Heredity 106: 920-26
< MR, Petersen JL, Hedrick RP, Schisler GJ, May B https://doi.org/10.1038/hdy.2010.137>
6. 2008: QTL for IHNV resistance and growth identified in a rainbow (Oncorhynchus mykiss) x Yellowstone cutthroat (Oncorhynchus clarki bouvieri) trout cross. Aquaculture 277: 156-163
< RM, Wheeler PA, LaPatra SE, Drew RE, Thorgaard GH https://doi.org/10.1016/j.aquaculture.2008.03.001>
7. 2002 Stress in fishes: A diversity of responses with particular reference to changes in circulating corticosteroids. Integr Comp Biol 42: 517-525
< BA https://doi.org/10.1093/icb/42.3.517>
8. 2000: Breeding programmes of salmonid fish with arctic charr as a case study of relative productivity %. Heredity 91: 60-69
E
9. 2010: Genotypic and phenotypic correlates with proliferative kidney disease-induced mortality in Atlantic salmon. Dis Aquat Org 89: 125-135
< EJ, Gilbey CS, Jones LR, Noble E, Verspoor E https://doi.org/10.3354/dao02191>
10. 2000: Nanogram quantities of a DNA vaccine protect rainbow trout fry against heterologous strains of infectious hematopoietic necrosis virus. Vaccine 18: 2817-2824
< S, LaPatra SE, Anderson ED, Kurath G https://doi.org/10.1016/S0264-410X(00)00078-5>
11. 1999: Epistasis in allelic expression at upper temperature tolerance QTL in rainbow trout. Aquaculture 173: 45-58
< RG, Jackson TR, Ferguson MM https://doi.org/10.1016/S0044-8486(98)00465-7>
12. 2014 Markers for selection of disease resistance in fish: a review. Aquacult Int 22: 1793-1812
< S, Sahoo PK https://doi.org/10.1007/s10499-014-9783-5>
13. 1995: Selection of rainbow trout resistant to viral haemorrhagic septicaemia virus and transmission of resistance by gynogenesis. Vet Res 26: 361-368
ME, Quillet MG, Hollebecq C, Torhy, Chevassus, B
14. 2011: Quantitative genetics of disease resistance in vaccinated and unvaccinated Atlantic salmon (Salmo salar L.). Heredity 107: 471-477
< TMK, Gjerde B, Ødegård J, Finne-Fridell F, Evensen Ø, Bentsen HB https://doi.org/10.1038/hdy.2011.34>
15. 2007: Detection of QTL influencing cortisol levels in rainbow trout (Oncorhynchus mykiss). Aquaculture 272: S183-S194
< RE, Schwabl H, Wheeler PA, Thorgaard GH https://doi.org/10.1016/j.aquaculture.2007.08.025>
16. 1996: Survival, growth, sexual maturation and reproduction of brook charr, Salvelinus fontinalis (Mitchill), Arctic charr, Salvelinus alpinus L., and their hybrids. Aquacult Res 27: 245-253
< S, Blanc JM, Vallée F, de la Noüe J https://doi.org/10.1111/j.1365-2109.1996.tb00991.x>
17. 1977 Selective breeding of trout for resistence to furunculosis. NY Fish Game J 24: 25-36
NF
18. 1992 Disease resistance in rainbow trout (Oncorhynchus mykiss) selected for stress response. Aquaculture 104: 19-29
< SE, Refstie T, Roed KH https://doi.org/10.1016/0044-8486(92)90134-7>
19. FishBoost 2017. FishBoost Web site. Available at: http://www.fishboost.eu. Accessed September 14, 2017
20. Flajšhans M, Hulák M, Kašpar V, Rodina M, Kocour M, Gela D 2009: Methodology of Preserving Genetic Fish Sources in a Live Gene Bank (in Czech). Edice Metodik, FROV JU Vodňany, No. 91, 35 p. (updated version 2015)
21. Flajšhans M, Kocour M, Ráb P, Hulák M, Petr J, Bohlen Šlechtová V, Šlechta V, Havelka M, Kašpar V, Linhart O 2013: Genetics and Breeding of Fish (in Czech). Fakulta rybářství a ochrany vod JCU, 305 p.
22. 2000: Genetic improvement of cold-water fish species. Aquacult Res 31: 25-33
< T https://doi.org/10.1046/j.1365-2109.2000.00389.x>
23. Gjedrem T 2005: Selection and Breeding Programs in Aquaculture. Springer, Dordrecht, The Netherlands, 364 p.
24. 2012: Genetic improvement for the development of efficient global aquaculture: a personal opinion review. Aquaculture 44: 344-349
T
25. 2012: The importance of selective breeding in aquaculture to meet future demands for animal protein: a review. Aquaculture 350-353: 117-129
< T, Robinson N, Rye M https://doi.org/10.1016/j.aquaculture.2012.04.008>
26. 2005: Selective breeding provides an approach to increase resistance of rainbow trout (Onchorhynchus mykiss) to the diseases, enteric redmouth disease, rainbow trout fry syndrome, and viral haemorrhagic septicaemia. Aquaculture 250: 621-636
< M, Berg P, Olesen NJ, Kjær TE, Slierendrecht WJ, Jokumsen A, Lund I https://doi.org/10.1016/j.aquaculture.2004.12.022>
27. Horký P 2015: Freshwater resources and fisheries in the Czech Republic. In Craig JF: Fresh Water Fisheries Ecology, 920 p.
28. International Council for the Exploration of the Sea 2008: Report of the Working Group on the Application of Genetics in Fisheries and Mariculture (WGAGFM)
29. 1998: Recovery from loading and transport stress in Atlantic salmon (Salmo salar L.) smolts. Aquaculture 168: 387-394
< M, Finstad B, Nilssen K https://doi.org/10.1016/S0044-8486(98)00364-0>
30. 1998: Identification of two QTL influencing upper temperature tolerance in three rainbow trout (Oncorhynchus mykiss) half-sib families. Heredity 80: 143-151
< TR, Ferguson MM, Danzmann RG, Fishback AG, Ihssen PE, O'Connell M, Crease TJ https://doi.org/10.1046/j.1365-2540.1998.00289.x>
31. Janssen K, Chavanne H, Berentsen P, Komen H 2015: Rainbow trout (Oncorhynchus mykiss) - current status of selective breeding in Europe. Aquaculture Europe 1-12
32. 2017: Impact of selective breeding on European aquaculture. Aquaculture 472: 8-16
< K, Chavanne H, Berentsen P, Komen H https://doi.org/10.1016/j.aquaculture.2016.03.012>
33. 2015: Genetic and genomic analyses for economically important traits and their applications in molecular breeding of cultured fish. Sci China Life Sci 58: 178-186
T, Xiaowen SUN
34. 2008: Suggestive association of major histocompatibility IB genetic markers with resistance to bacterial cold water disease in rainbow trout (Oncorhynchus mykiss). Marine Biotechnol 10: 429-437
< NA, Vallejo RL, Silverstein JT, Welch TJ, Wiens GD, Hallerman EM, Palti Y https://doi.org/10.1007/s10126-007-9080-7>
35. 2004: Identification of a novel chromosomal region associated with infectious hematopoietic necrosis (IHN) resistance in rainbow trout Oncorhynchus mykiss. Fish Pathol 39: 95-101
KS, AkiyukOi, Fusayuki N, Tetsuya A, Shinichi I, Nickolov R, Takashi S, Tetsuya A, Mamiko M, Ikuo D, Nobuaki O
36. 2014: Identification of quantitative trait loci (QTLs) in aquaculture species. Rev Fisheries Sci & Aquacult 22: 221-238
M, Lashari P, Zhang Y, Sun X
37. 2014: Neutral and selective processes shape MHC gene diversity and expression in stocked brook charr populations (Salvelinus fontinalis). Molecular Ecol 23: 1730-1748
< FC, Pavey SA, Normandeau E, Roy G, Garant D, Bernatchez L https://doi.org/10.1111/mec.12684>
38. 2010: Response to selection for bacterial cold water disease resistance in rainbow trout. J Animal Sci 88: 1936-1946
< TDJ, Silverstein T, Weber GM, Vallejo RL, Palti Y, Rexroad CE, Evenhuis J, Hadidi S, Welch TJ, Wiens GD https://doi.org/10.2527/jas.2009-2538>
39. 2013 Polymorphisms in MHC class Ia genes and resistance to IHNV in rainbow trout (Oncorhynchus mykiss). Genes Genomics 35: 587-595
< Z, Hu DD, Shao SJ, Yang J, Wang JF, Huang JQ https://doi.org/10.1007/s13258-013-0107-3>
40. 2015: Identification of single-nucleotide polymorphism markers associated with cortisol response to crowding in rainbow trout. Mar Biotechnol 17: 328-337
< S, Vallejo RL, Gao G, Palti Y, Weber GM, Hernandez A, Roxroad CE https://doi.org/10.1007/s10126-015-9621-4>
41. 2010: Immunological control of fish diseases. Marine Biotechnol 12: 361-379
< B https://doi.org/10.1007/s10126-010-9279-x>
42. 2003: Regulation of natural killer cell function. Cancer Biol Ther 2: 610-616
AP, Anderson SK
43. 2002: The potential impact of modern biotechnology on fish aquaculture. Aquaculture 204: 255-269
< P, Gong Z, Fletcher G, Hew ChL https://doi.org/10.1016/S0044-8486(01)00838-9>
44. 2006: Major histocompatibility class II genes in rainbow trout (Oncorhynchus mykiss) exhibit temperature dependent downregulation. Immunogenetics 58: 443-453
< S, Kales S, Fujiki K, Dixon B https://doi.org/10.1007/s00251-006-0094-5>
45. 2003a: Mapping multiple genetic loci associated with Ceratomyxa shasta resistance in Oncorhynchus mykiss. Dis Aquat Org 56: 145-154
< KM, Bartholomew J, Thorgaard GH https://doi.org/10.3354/dao056145>
46. 2003b: A consolidated linkage map for rainbow trout (Oncorhynchus mykiss). Anim Genet 34: 102-115
< KM, Young WP, Danzmann RG, Robison BD, Rexroad C, Noakes M, Phillips RB, Bentzen P, Spies I, Knudsen K, Allendorf FW, Cunningham BM, Brunelli J, Zhang H, Ristow S, Drew R, Brown KH,Wheeler PA, Thorgaard GH https://doi.org/10.1046/j.1365-2052.2003.00957.x>
47. 2011: Methodology for genetic evaluation of disease resistance in aquaculture species: challenges and future prospects. Aquaculture Res 42: S103-S114
< J, Baranski M, Gjerde B, Gjedrem T https://doi.org/10.1111/j.1365-2109.2010.02669.x>
48. 1993: Resistance of a rainbow trout strain to infectious pancreatic necrosis. Aquaculture 117: 71-76
< N, Tayaman T, Kawanobe M, Fujiki N, Yasuda Y, Sano T https://doi.org/10.1016/0044-8486(93)90124-H>
49. 2010 Relationships between growth and disease resistance in rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 33: 321-329
< K, LaPatra S, Towner R, Campbell N, Narum S https://doi.org/10.1111/j.1365-2761.2009.01124.x>
50. 2001: Quantitative trait loci (QTLs) associated with resistance/susceptibility to infectious pancreatic necrosis virus (IPNV) in rainbow trout (Oncorhynchus mykiss). Mol Genet Genomics 265: 23-31
A, Sakamoto T, Khoo S, Nakamura K, Coimbra MR, Akutsu T, Okamoto N
51. 2007: Identification of additional quantitative trait loci (QTL) responsible for susceptibility to infectious pancreatic necrosis virus in rainbow trout. Fish Pathol 42: 131-140
< A, Khoo S, Yoshiura Y, Ototake M, Sakamoto T, Dijkstra JM, Okamoto N https://doi.org/10.3147/jsfp.42.131>
52. 2015a: Preventive and prophylatic measures in intensive salmonid fish breeding - a review. Acta Univ Agricult Silvicult Mendel Brunensis 63: 1409-1416
< M, Navrátil S, Mareš J https://doi.org/10.11118/actaun201563041409>
53. 2015b: Health problems of salmonid fish in recirculation systems of danish type under conditions of the Czech Republic. Veterinářství 65: 636-642
M, Marková Z, Navrátil S, Mareš J, Papežíková I
54. 2001: Association between DNA polymorphisms tightly linked to MHC class II genes and IHN virus resistance in backcrosses of rainbow and cutthroat trout. Aquaculture 194: 283-389
< Y, Nichols KM, Waller KI, Parsons JE, Thorgaard GH https://doi.org/10.1016/S0044-8486(00)00526-3>
55. 1999: Identification of candidate DNA markers associated with IHN virus resistance in backcrosses of rainbow (Oncorhynchus mykiss) and cutthroat trout (O. clarki). Aquaculture 173: 81-94
< Y, Parsons JE, Thorgaard GH https://doi.org/10.1016/S0044-8486(98)00471-2>
56. 2001: Quantitative trait loci for upper thermal tolerance in outbred strains of rainbow trout (Oncorhynchus mykiss). Heredity 86: 333-341
< GML, Danzmann RG, Ferguson MM, Gibson JP https://doi.org/10.1046/j.1365-2540.2001.00838.x>
57. 2004: Genetic variance and covariance for 0+ brook charr (Salvelinus fontinalis) weight and survival time of furunculosis (Aeromonas salmonicida) exposure. Aquaculture 235: 263-271
< GML, Tarte P, Croisetiere S, Belhumeur P, Bernatchez L https://doi.org/10.1016/j.aquaculture.2004.03.002>
58. 2005: Sex-linked quantitative trait loci for thermotolerance and length in the rainbow trout. J Hered 96: 97-107
< GML, Ferguson M, Sakamoto T, Danzmann RG https://doi.org/10.1093/jhered/esi019>
59. 2009: Vaccination of rainbow trout, Oncorhynchus mykiss (Walbaum), with recombinant and DNA vaccines produced to Flavobacterium psychrophilum heat shock proteins 60 and 70. J Fish Dis 32: 521-534
< KP, La Patra SE, Cain KD https://doi.org/10.1111/j.1365-2761.2009.01008.x>
60. Reiter RH 2006: Leistungs- und Qualitätseigenschaften jeweils zweier Herkünfte des Seesaiblings und des Bachsaiblings sowie ihrer Kreuzungen [Performance and quality characteristics of two sources of Arctic charr and brook trout and their crosses]. Dissertation: Technische Universität München, 193 p.
61. 2012: QTL affecting stress response to crowding in a rainbow trout broodstock population. BMC Genetics 13: 97
< CE, Vallejo RL, Liu S, Palti Y, Weber GM https://doi.org/10.1186/1471-2156-13-97>
62. 2004: Genetic markers associated with resistance to infectious hematopoietic necrosis in rainbow and steelhead trout (Oncorhynchus mykiss) backcrosses. Aquaculture 241: 93-115
< MF, LaPatra S, Williams S, Famula T, May B https://doi.org/10.1016/j.aquaculture.2004.08.003>
63. 1990: The genetic influence on serum haemolytic activity in rainbow trout (Oncorhynchus mykiss) selected for lysozyme activity. Aquaculture 209: 91-101
< KH, Brun E, Larsen HJ, Refstie T https://doi.org/10.1016/S0044-8486(01)00810-9>
64. Rye M 2012: Current status and prospects for the application of genetic improvement in aquaculture species. In Symposium. Procedings of 9th Biennial of the Brazilian Society of Animal Breeding, pp 20-22
65. 2012: Coding gene SNP mapping reveals QTL linked to growth and stress response in brook charr (Salvelinus fontinalis). G3 Genes Genom Genet 2: 707-720
C, Vagner M, Derôme N, Audet C, Bernatchez L
66. 2009: Rainbow trout resistance to bacterial cold-water disease is moderately heritable and is not adversely correlated with growth. J Anim Sci 87: 860-867
< JT, Vallejo RL, Palti Y, Leeds TD, Rexroad CE, Welch TJ, Wiens GD, Ducrocq V https://doi.org/10.2527/jas.2008-1157>
67. 2005: Vaccines for fish in aquaculture. Expert Rev Vaccines 4: 89-101
< I, Krossøy B, Biering E, Frost P https://doi.org/10.1586/14760584.4.1.89>
68. 2010: Evidence of major genes affecting resistance to bacterial cold water disease in rainbow trout using bayesian methods of segregation analysis. J Anim Sci 88: 3814-3832
< RL, Wiens GD, Rexroad CE, Welch TJ, Evenhuis JP, Leeds TD, Janss LLG, Palti Y https://doi.org/10.2527/jas.2010-2951>
69. 2008: Survival of the currently fittest: genetics of rainbow trout survival across time and space. Genetics 180: 507-516
< H, Kause A, Quinton Ch, Koskinen H, Paananen T https://doi.org/10.1534/genetics.108.089896>
70. 2008: Cortizol response to a crowding stress: heritability and association with disease resistance to Yersinia ruckeri in rainbow trout. N Am J Aquacult 70: 425-433
< GM, Vallejo RL https://doi.org/10.1577/A07-059.1>
71. 2007: What role for genomics in fisheries management and aquaculture? Aquatic Living Resources 20: 241-255
< R, Boudry P, Hemmer-Hansen J, Lubieniecki KP, Was A, Kause A https://doi.org/10.1051/alr:2007037>
72. 2014: Genetics and genomics of disease resistance in salmonid species. Frontiers in Genetics 5: 415
JM, Houston RD, Newman S