Acta Vet. Brno 2018, 87: 189-195
https://doi.org/10.2754/avb201887020189
    Quantitative assessment of Lactococcus lactis subsp. cremoris present in artisanal raw cow’s milk cheese
References
1.  TP, Fitzsimons NA, Brennan NL, Cogan TM 2001: Recent advances in cheese microbiology. Int Dairy J 11: 259-274
            <https://doi.org/10.1016/S0958-6946(01)00056-5>
        
        
    
        2.  L, Maifreni M, Bartolomeoli I, Martino ME, Novelli E, Frigo F, Marino M, Cardazzo B 2011: Comparison of culture-dependent and -independent methods for bacterial community monitoring during Montasio cheese manufacturing. Res in Microbiol 162: 231-239
            <https://doi.org/10.1016/j.resmic.2011.01.002>
        
        
    
        3.  M, Duboz G, Faurie F, Le Quéré JL, Berthier F 2009: Multiple interactions between Streptococcus thermophilus, Lactobacillus helvetius and Lactobacillus delbrueckii strongly affect their growth kinetics during the making of hard cooked cheeses. Int J Food Microbiol 131: 10-19
            <https://doi.org/10.1016/j.ijfoodmicro.2008.08.022>
        
        
    
        4.  F 1988: Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16: 10881-10890
            <https://doi.org/10.1093/nar/16.22.10881>
        
        
    
        5.  H, Henaff N, Le Bivic P, Deutsch SM, Parayre S, Richoux R, Sohier D, Thierry A, Lortal S, Postollec F 2012: Reverse transcription quantitative PCR revealed persistency of thermophilic lactic acid bacteria metabolic activity until the end of the ripening of Emmental cheese. Food Microbiol 29: 132-140
            <https://doi.org/10.1016/j.fm.2011.09.009>
        
        
    
        6.  H, Postollec F, Parayre S, Henaff N, Le Bivic P, Richoux R, Thierry A, Sohier D 2010: Specific metabolic activity of ripening bacteria quantified by real-time reverse transcription PCR throughout Emmental cheese manufacture. Int J Food Microbiol 144: 10-19
            <https://doi.org/10.1016/j.ijfoodmicro.2010.06.003>
        
        
    
        7.  U, Lenke J 2006: Improved enumeration of lactic acid bacteria in mesophilic dairy starter cultures by using multiplex quantitative real-time PCR and flow cytometry fluorescence in situ hybridization. Appl Environ Microb 72: 4163-4171
            <https://doi.org/10.1128/AEM.02283-05>
        
        
    
        8.  JP, Quénée P, Tailliez P 2004: Molecular quantification of lactic acid bacteria in fermented milk products using real-time quantitative PCR. Int J Food Microbiol 97: 197-207
            <https://doi.org/10.1016/j.ijfoodmicro.2004.04.020>
        
        
    
        9.  B, Stuart MR, Weimer BC 2007: Carbohydrate starvation causes a metabolically active but nonculturable state in Lactococcus lactis. Appl Environ Microb 73: 2498-2512
            <https://doi.org/10.1128/AEM.01832-06>
        
        
    
        10.  F, Lacroix C, Audet P, Lapointe G 2005: Quantification by real-time PCR of Lactococcus lactis subsp. cremoris in milk fermented by a mixed culture. Appl Microb Biotech 66: 414-421
            <https://doi.org/10.1007/s00253-004-1705-4>
        
        
    
        11.  SE, Connor CJ, Wang HH 2005: Real-time polymerase chain reaction for the food microbiologist: technologies, applications, and limitations. J Food Sci 70: 4953
            
        
        
    
        12.  F, Mounier J 2009: Microbial interactions in cheese: implications for cheese quality and safety. Current Opinion in Biotech 20: 142-148
            <https://doi.org/10.1016/j.copbio.2009.02.016>
        
        
    
        13.  W, Vogensen FK, Lillevang S, Abu Al-Soud W, Sorensen SJ, Jakobsen M 2012: The fate of indigenous microbiota, starter cultures, Escherichia coli, Listeria innocua and Staphylococcus aureus in Danish raw milk and cheeses determined by pyrosequencing and quantitative real time (qRT)-PCR. Int J Food Microbiol 153: 192-202
            <https://doi.org/10.1016/j.ijfoodmicro.2011.11.014>
        
        
    
        14.  B, Rasolofo E, LaPointe G, Roy D 2011: A review of the molecular approaches to investigate the diversity and activity of cheese microbiota. Dairy Sci Techn 91: 495-524
            <https://doi.org/10.1007/s13594-011-0031-8>
        
        
    
        15.  F, Falentin H, Pavan S, Combrisson J, Sohier D 2011: Recent advances in quantitative PCR (qPCR) applications in food microbiology. Food Microb 28: 848-861
            <https://doi.org/10.1016/j.fm.2011.02.008>
        
        
    
        16.  LO, Sullivan O, Beresford TP, Ross RP, Fitzgerald GF, Cotter PD 2011: Molecular approaches to analysing the microbial composition of raw milk and raw milk cheese. Int J Food Microbiol 150: 81-94
            <https://doi.org/10.1016/j.ijfoodmicro.2011.08.001>
        
        
    
        17.  CL, Caggia C, Neviani E 2009: Application of molecular approaches to study lactic acid bacteria in artisanal cheeses. J Microb Meth 78: 1-9
            <https://doi.org/10.1016/j.mimet.2009.04.001>
        
        
    
        18.  S, Goswami P, Singh R, Heller KJ 2009: Application of molecular identification tools for Lactobacillus, with a focus on discrimination between closely related species: a review. LWT - Food Sci Techn 42: 448-457
            <https://doi.org/10.1016/j.lwt.2008.05.019>
        
        
    
        19.  D, Jamet E, Le Dizes AS, Dizin M, Pavan S, Postollec F, Coton E 2012: Polyphasic approach for quantitative analysis of obligately heterofermentative Lactobacillus species in cheese. Food Microb 31: 271-277
            <https://doi.org/10.1016/j.fm.2012.01.009>
        
        
    
        20.  JTM, Ayad EHE, Hugenholtz J, Smit G 2002: Microbes from raw milk for fermented dairy products. Int Dairy J 12: 91-109
            <https://doi.org/10.1016/S0958-6946(01)00151-0>
        
        
    
 
        
