Acta Vet. Brno 2018, 87: 189-195

https://doi.org/10.2754/avb201887020189

Quantitative assessment of Lactococcus lactis subsp. cremoris present in artisanal raw cow’s milk cheese

Milena Alicja Stachelska

Lomza State University of Applied Sciences, Institute of Food Technology and Gastronomy, Łomża, Poland

Received November 5, 2017
Accepted May 15, 2018

References

1. Beresford TP, Fitzsimons NA, Brennan NL, Cogan TM 2001: Recent advances in cheese microbiology. Int Dairy J 11: 259-274 <https://doi.org/10.1016/S0958-6946(01)00056-5>
2. Carraro L, Maifreni M, Bartolomeoli I, Martino ME, Novelli E, Frigo F, Marino M, Cardazzo B 2011: Comparison of culture-dependent and -independent methods for bacterial community monitoring during Montasio cheese manufacturing. Res in Microbiol 162: 231-239 <https://doi.org/10.1016/j.resmic.2011.01.002>
3. Charlet M, Duboz G, Faurie F, Le Quéré JL, Berthier F 2009: Multiple interactions between Streptococcus thermophilus, Lactobacillus helvetius and Lactobacillus delbrueckii strongly affect their growth kinetics during the making of hard cooked cheeses. Int J Food Microbiol 131: 10-19 <https://doi.org/10.1016/j.ijfoodmicro.2008.08.022>
4. Corpet F 1988: Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16: 10881-10890 <https://doi.org/10.1093/nar/16.22.10881>
5. Falentin H, Henaff N, Le Bivic P, Deutsch SM, Parayre S, Richoux R, Sohier D, Thierry A, Lortal S, Postollec F 2012: Reverse transcription quantitative PCR revealed persistency of thermophilic lactic acid bacteria metabolic activity until the end of the ripening of Emmental cheese. Food Microbiol 29: 132-140 <https://doi.org/10.1016/j.fm.2011.09.009>
6. Falentin H, Postollec F, Parayre S, Henaff N, Le Bivic P, Richoux R, Thierry A, Sohier D 2010: Specific metabolic activity of ripening bacteria quantified by real-time reverse transcription PCR throughout Emmental cheese manufacture. Int J Food Microbiol 144: 10-19 <https://doi.org/10.1016/j.ijfoodmicro.2010.06.003>
7. Friedrich U, Lenke J 2006: Improved enumeration of lactic acid bacteria in mesophilic dairy starter cultures by using multiplex quantitative real-time PCR and flow cytometry fluorescence in situ hybridization. Appl Environ Microb 72: 4163-4171 <https://doi.org/10.1128/AEM.02283-05>
8. Furet JP, Quénée P, Tailliez P 2004: Molecular quantification of lactic acid bacteria in fermented milk products using real-time quantitative PCR. Int J Food Microbiol 97: 197-207 <https://doi.org/10.1016/j.ijfoodmicro.2004.04.020>
9. Ganesan B, Stuart MR, Weimer BC 2007: Carbohydrate starvation causes a metabolically active but nonculturable state in Lactococcus lactis. Appl Environ Microb 73: 2498-2512 <https://doi.org/10.1128/AEM.01832-06>
10. Grattepanche F, Lacroix C, Audet P, Lapointe G 2005: Quantification by real-time PCR of Lactococcus lactis subsp. cremoris in milk fermented by a mixed culture. Appl Microb Biotech 66: 414-421 <https://doi.org/10.1007/s00253-004-1705-4>
11. Hanna SE, Connor CJ, Wang HH 2005: Real-time polymerase chain reaction for the food microbiologist: technologies, applications, and limitations. J Food Sci 70: 4953
12. Irlinger F, Mounier J 2009: Microbial interactions in cheese: implications for cheese quality and safety. Current Opinion in Biotech 20: 142-148 <https://doi.org/10.1016/j.copbio.2009.02.016>
13. Masoud W, Vogensen FK, Lillevang S, Abu Al-Soud W, Sorensen SJ, Jakobsen M 2012: The fate of indigenous microbiota, starter cultures, Escherichia coli, Listeria innocua and Staphylococcus aureus in Danish raw milk and cheeses determined by pyrosequencing and quantitative real time (qRT)-PCR. Int J Food Microbiol 153: 192-202 <https://doi.org/10.1016/j.ijfoodmicro.2011.11.014>
14. Ndoye B, Rasolofo E, LaPointe G, Roy D 2011: A review of the molecular approaches to investigate the diversity and activity of cheese microbiota. Dairy Sci Techn 91: 495-524 <https://doi.org/10.1007/s13594-011-0031-8>
15. Postollec F, Falentin H, Pavan S, Combrisson J, Sohier D 2011: Recent advances in quantitative PCR (qPCR) applications in food microbiology. Food Microb 28: 848-861 <https://doi.org/10.1016/j.fm.2011.02.008>
16. Quigley LO, Sullivan O, Beresford TP, Ross RP, Fitzgerald GF, Cotter PD 2011: Molecular approaches to analysing the microbial composition of raw milk and raw milk cheese. Int J Food Microbiol 150: 81-94 <https://doi.org/10.1016/j.ijfoodmicro.2011.08.001>
17. Randazzo CL, Caggia C, Neviani E 2009: Application of molecular approaches to study lactic acid bacteria in artisanal cheeses. J Microb Meth 78: 1-9 <https://doi.org/10.1016/j.mimet.2009.04.001>
18. Singh S, Goswami P, Singh R, Heller KJ 2009: Application of molecular identification tools for Lactobacillus, with a focus on discrimination between closely related species: a review. LWT - Food Sci Techn 42: 448-457 <https://doi.org/10.1016/j.lwt.2008.05.019>
19. Sohier D, Jamet E, Le Dizes AS, Dizin M, Pavan S, Postollec F, Coton E 2012: Polyphasic approach for quantitative analysis of obligately heterofermentative Lactobacillus species in cheese. Food Microb 31: 271-277 <https://doi.org/10.1016/j.fm.2012.01.009>
20. Wouters JTM, Ayad EHE, Hugenholtz J, Smit G 2002: Microbes from raw milk for fermented dairy products. Int Dairy J 12: 91-109 <https://doi.org/10.1016/S0958-6946(01)00151-0>
front cover
  • ISSN 0001-7213 (printed)
  • ISSN 1801-7576 (electronic)

Current issue

Archive