Acta Vet. Brno 2018, 87: 277-284
https://doi.org/10.2754/avb201887030277
    In vitro antibacterial activity of macelignan and corosolic acid against the bacterial bee pathogens Paenibacillus larvae and Melissococcus plutonius
References
1.  D, Gaggìa F, Baffoni L, Di Gioia D 2016: Beneficial microorganisms for honey bees: problems and progresses. Appl Microbiol Biotechnol 100: 9469-9482
            <https://doi.org/10.1007/s00253-016-7870-4>
        
        
    
        2.  GN, Henning C, Ringuelet J, Reynaldi FJ, De Giusti MR, Alippi AM 2003: Evaluation of some essential oils for the control and prevention of American Foulbrood disease in honey bees. Apidologie 34: 417-427
            <https://doi.org/10.1051/apido:2003040>
        
        
    
        3.  AM 1996: Characterization of isolates of Paenibacillus larvae with biochemical type and oxytetracycline resistance. Rev Argent Microbiol 28: 197-203
            
        
        
    
        4.  AM, López AC, Aguilar OM 2002: Differentiation of Paenibacillus larvae subsp. larvae, the cause of American foulbrood of honeybees, by using PCR and restriction fragment analysis of genes encoding 16S rRNA. Appl Environ Microbiol 68: 3655-3660
            <https://doi.org/10.1128/AEM.68.7.3655-3660.2002>
        
        
    
        5.  MJ, Al-Ghamdi A, Usmani S, Al-Waili N, Nuru A, Sharma D, Khan KA, Kaur M, Omer M 2016: In vitro evaluation of the effects of some plant essential oils on Paenibacillus larvae, the causative agent of American foulbrood. Biotechnol Biotechnol Equip 30: 49-55
            <https://doi.org/10.1080/13102818.2015.1086690>
        
        
    
        6.  L 1983: Melissococcus pluton, the cause of European foulbrood of honey bees (Apis spp.). J Appl Microbiol 55: 65-69
            
        
        
    
        7.  R, Green S 2015: Antibiotics: the changing regulatory and pharmaceutical industry paradigm. J Antimicrob Chemother 70: 1281-1284
            <https://doi.org/10.1093/jac/dku572>
        
        
    
        8.  I, Roberts M 2001: Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65: 232-260
            <https://doi.org/10.1128/MMBR.65.2.232-260.2001>
        
        
    
        9. Clinical and Laboratory Standard Institute, Performance standard for antimicrobial susceptibility testing; 21st informational supplement, CLSI document M100-S21 2009. CLSI, Wayne, PA
            
        
        
    
        10.  RS, Tarpy DR, Chen Y, Jeffreys L, Lopez D, Pettis JS, van Engelsdorp D, Evans JD 2012: Pathogen webs in collapsing honey bee colonies. Plos One 7: e43562
            <https://doi.org/10.1371/journal.pone.0043562>
        
        
    
        11.  W, de Graaf DC, Reybroeck W, Desmedt E, Peeters JE, Jacobs FJ. 2001: Disinfection of wooden structures contaminated with Paenibacillus larvae subsp. larvae spores. J Appl Microbiol 91:212-216
            <https://doi.org/10.1046/j.1365-2672.2001.01376.x>
        
        
    
        12.  M, Mantopoulou FD, Skiada A, Kanioura L, Grammatikou M, Vrioni G Mitroussia-Ziouva A, Tsakris A, Petrikkos G 2012: In vitro antifungal susceptibility of filamentous fungi causing rare infections: synergy testing of amphotericin B, posaconazole and anidulafungin in pairs. J Antimicrob Chemother 67: 1937-1940
            <https://doi.org/10.1093/jac/dks137>
        
        
    
        13.  J, Knispel H, Hertlein G, Fünfhaus A, Genersch E 2016: Biology of Paenibacillus larvae, a deadly pathogen of honey bee larvae. Appl Microbiol Biotechnol 100: 7387-7395
            <https://doi.org/10.1007/s00253-016-7716-0>
        
        
    
        14.  JD 2003: Diverse origins of tetracycline resistance in the honey bee bacterial pathogen Paenibacillus larvae. J Invertebr Pathol 83: 46-50
            <https://doi.org/10.1016/S0022-2011(03)00039-9>
        
        
    
        15.  E 2010: European foulbrood in honey bees. J Invertebr Pathol 103: S5-S9
            <https://doi.org/10.1016/j.jip.2009.06.016>
        
        
    
        16.  E, Lundhagen AC, Imdorf A, Fries I 2005: Distribution of Melissococcus plutonius in honey bee colonies with and without symptoms of European foulbrood. Microb Ecol 50: 369-374
            <https://doi.org/10.1007/s00248-004-0188-2>
        
        
    
        17.  LB, Eguaras MJ, Fritz R 2008: Evaluation of culture media for Paenibacillus larvae applied to studies of antimicrobial activity. Rev Argent Microbiol 40: 147-150
            
        
        
    
        18.  E 2007: Paenibacillus larvae and American foulbrood in honeybees. Berl Munch Tierarztl Wochenschr 120: 26-33
            
        
        
    
        19.  E 2010: Honey bee pathology: current threats to honey bees and beekeeping. Appl Microbiol Biotechnol 87: 87-97
            <https://doi.org/10.1007/s00253-010-2573-8>
        
        
    
        20.  MJ, Beoletto VG, Agnese AM, Audisio MC, Marioli JM 2015: Purification of substances from Achyrocline satureioides with inhibitory activity against Paenibacillus larvae, the causal agent of American foulbrood in honeybees’ larvae. Appl Biochem Biotechnol 175: 3349-3359
            <https://doi.org/10.1007/s12010-015-1506-5>
        
        
    
        21.  BR 2017: Common antibiotic hurts bee survival. Science 355: 1387
            
        
        
    
        22.  SJ, Cha JY, Kang HS, Lee JH, Lee JY, Park JH, Bae JH, Song DK, Im SS 2016: Corosolic acid ameliorates acute inflammation through inhibition of IRAK-1 phosphorylation in macrophages. BMB Rep 49: 276-281
            <https://doi.org/10.5483/BMBRep.2016.49.5.241>
        
        
    
        23.  M, Gende L, Russo K, Fritz R, Eguaras M 2011: Bioactivity of Rosmarinus officinalis essential oils against Apis mellifera, Varroa destructor and Paenibacillus larvae related to the drying treatment of the plant material. Nat Prod Res 25: 397-406
            <https://doi.org/10.1080/14786419.2010.481261>
        
        
    
        24.  T, Peng CY, Chuang RY, Mussen EC, Spivak MS, Doi RH 2000: Verification of oxytetracycline-resistant American foulbrood pathogen Paenibacillus larvae in the United States. J Invertebr Pathol 75: 95-96
            <https://doi.org/10.1006/jipa.1999.4888>
        
        
    
        25.  ML, Lindsey KL, van Staden J, Jäger AK 2003: Screening of traditionally used South African plants for antifungal activity against Candida albicans. J Ethnopharmacol 86: 235-241
            <https://doi.org/10.1016/S0378-8741(03)00082-5>
        
        
    
        26.  F 2003: European legislation governing the authorisation of veterinary medical products with particular reference to the use of drugs for the control of honey bee diseases. Apiacta 38: 156-168
            
        
        
    
        27.  A, Keskin N, Kürkçüoğlu M, Başer KHC 2014: Evaluation of some essential oils as alternative antibiotics against American foulbrood agent Paenibacillus larvae on honey bees Apis mellifera L. J Essent Oil Res 24: 465-470
            <https://doi.org/10.1080/10412905.2012.703504>
        
        
    
        28.  KS, Kang KC, Kim JH, Adams DJ, Johng TN, Paik YK 1999: Differential inhibitory effects of protoberberines on sterol and chitin biosyntheses in Candida albicans. J Antimicrob Chemother 43: 667-674
            <https://doi.org/10.1093/jac/43.5.667>
        
        
    
        29.  JS, Kochansky J, Feldlaufer MF 2004: Larval Apis mellifera L: (Hymenoptera: Apidae) mortality after topical application of antibiotics and dusts. J Econ Entomol 97: 171-176
            <https://doi.org/10.1093/jee/97.2.171>
        
        
    
        30.  K, Shaffer Z, Moran NA 2017: Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. Plos Biol 15: e2001861
            <https://doi.org/10.1371/journal.pbio.2001861>
        
        
    
        31.  Y, Lee K, Han S, Kim S, Hwang JK 2009: Antibacterial and sporicidal activity of macelignan isolated from nutmeg (Myristica fragrans Houtt.) against Bacillus cereus. Food Sci Biotechnol 18: 1301-1304
            
        
        
    
        32.  N, Traynor KS, Steinhauer N, Rennich K, Wilson ME, Ellis JD, Rose R, Tarpy DR, Sagili RR, Caron DM, Delaplane KS, Rangel J, Lee K, Baylis K, Wilkes JT, Skinner JA, Pettis JS, van Engelsdorp D 2016: A national survey of managed honey bee 2014–2015 annual colony losses in the USA. J Apic Res 54: 1-12
            
        
        
    
        33.  YK, Kim KY 2016: Macelignan inhibits bee pathogenic fungi Ascophaera apis growth through HOG1 pathway. Braz J Med Biol Res 49: e5313
            <https://doi.org/10.1590/1414-431X20165313>
        
        
    
        34.  SJ, Miller H, Kaats GR 2013: A review of the efficacy and safety of banaba (Lagerstroemia speciosa L.) and corosolic acid. Phytother Res 26: 317-324
            
        
        
    
        35.  D, Morinishi K, Arai R, Sakamoto A, Okura M, Osaki M 2014: Typing of Melissococcus plutonius isolated from European and Japanese honeybees suggests spread of sequence types across borders and between different Apis species. Vet Microbiol 171: 221-226
            <https://doi.org/10.1016/j.vetmic.2014.03.036>
        
        
    
        36.  D, Sato M, Yoshiyama M 2016: Infection of Melissococcus plutonius clonal complex 12 strain in European honeybee larvae is essentially confined to the digestive tract. J Vet Med Sci 78: 29-34
            <https://doi.org/10.1292/jvms.15-0405>
        
        
    
        37.  HM, Brown MA 2001: Is contact colony treatment with antibiotics an effective control for European foulbrood? Bee World 82: 130-138
            <https://doi.org/10.1080/0005772X.2001.11099515>
        
        
    
        38.  HM, Waite RJ, Wilkins S, Brown MA, Bigwood T, Shaw M, Ridgway C, Sharman M 2005: Effects of European foulbrood treatment regime on oxytetracycline levels in honey extracted from treated honey bee (Apis mellifera) colonies and toxicity to brood. Food Addit Contam 22: 573-578
            <https://doi.org/10.1080/02652030500089986>
        
        
    
        39.  MD, Vukovic NL, Djelic GT, Popovic SL, Zaric MM, Baskic DD, Krstic GB, Tesevic VV, Kacaniova MM 2017: Antibacterial and cytotoxic activities of naphthoquinone pigments from Onosma visianii Clem. EXCLI J 16: 73-88
            
        
        
    
        40.  M, Sugimura Y, Iwata K, Takaya N, Takamatsu D, Kobayashi M, Taylor D, Kimura K, Yoshiyama M 2014: Inhibitory effect of gut bacteria from the Japanese honey bee, Apis cerana japonica, against Melissococcus plutonius, the causal agent of European foulbrood disease. J Insect Sci 14: 129
            
        
        
    
        41.  D, Taschereau P, Belland RJ, Sand C, Rennie RP 2008: Antifungal activity of medicinal plant extracts; preliminary screening studies. J Ethnopharmacol 115: 140-146
            <https://doi.org/10.1016/j.jep.2007.09.014>
        
        
    
        42.  Hwang SJ, Park S, Hwang JK, Pan JG 2015: Food-grade antimicrobials potentiate the antibacterial activity of 1,2-hexanediol. Lett Appl Microbiol. 60:431-439
            <https://doi.org/10.1111/lam.12398>
        
        
    
        43.  M, Kimura K 2009: Bacteria in the gut of Japanese honeybee, Apis cerana japonica, and their antagonistic effect against Paenibacillus larvae, the causal agent of American foulbrood. J Invertebr Pathol 102: 91-96
            <https://doi.org/10.1016/j.jip.2009.07.005>
        
        
    
 
        
