Acta Vet. Brno 2018, 87: 363-370
https://doi.org/10.2754/avb201887040363
The role of fish scale derived scaffold and platelet rich plasma in healing of rabbit tibial defect: an experimental study
References
1. J, Thompson M, Hulley P, Noble A, Willett K 2009: The biology of platelet-rich plasma and its application in trauma and orthopaedic surgery: a review of the literature. J Bone Joint Surg Br 91: 987-996
<https://doi.org/10.1302/0301-620X.91B8.22546>
2. MR, Bhagat SB, Shukla DD 2009: Bovine cancellous xenograft in the treatment of tibial plateau fractures in elderly patients. Int Orthop 33: 779-784
<https://doi.org/10.1007/s00264-008-0526-y>
3. JA, Cooper RR 1987: Bone structure and function. Instr Course Lect 36: 2748
4. V, Milano G, Pagano E, Barba M, Cicione C, Salonna G, Lattanzi W, Logroscino G 2014: Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med 25: 2445-2461
<https://doi.org/10.1007/s10856-014-5240-2>
5. CH, Chen YG, Lin CC, Lin SM, Yang KC, Chang SH 2014: Bioabsorbable fish scale for the internal fixation of fracture: a preliminary study. Tissue Eng Part A 20: 2493-2502
<https://doi.org/10.1089/ten.tea.2013.0174>
6. R, Macera A, Nistri L, Redl B, Innocenti M 2011: The use of autologous blood-derived growth factors in bone regeneration. Clin Cases Miner Bone Metab 8: 25-31
7. H, Unver Saraydin S, Kartal U 2009: The bone healing effect of a xenograft in a rat calvarial defect model. Dent Mater J 28: 396400
<https://doi.org/10.4012/dmj.28.396>
8. R, Jones E, McGonagle D, Giannoudis P.V 2011: Bone regeneration: current concepts and future directions. BMC Med 9: 66
<https://doi.org/10.1186/1741-7015-9-66>
9. J, Mo X, Li Y, Chen D 2012: Recent research progress of decellularization of native tissues. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 29: 100713
10. MC, Alpaslan C, Alpaslan G, Çakır M 2014: Clinical and radiographic evaluation of the efficacy of plateletrich plasma combined with hydroxyapatite bone graft substitutes in the treatment of intrabony defects in maxillofacial region. Acta Odontol Scand 72: 948-953
<https://doi.org/10.3109/00016357.2014.926023>
11. TW, Sellaro TL, Badylak SF 2006: Decellularization of tissues and organs. Biomaterials 27: 3675-3683
12. M, Jungbluth P, Sager M, Betsch M, Herten M, Becker J, Windolf J, Wild M 2010: Combined use of platelet rich plasma and autologous bone grafts in the treatment of long bone defects in minipigs. Injury 41: 71723
<https://doi.org/10.1016/j.injury.2009.12.005>
13. Y, Funamoto S, Kimura T, Nam K, Fujisato T, Kishida A 2011: Evaluation of decellularized bone using high-hydrostatic pressure. Biomaterials 32: 7060-7067
<https://doi.org/10.1016/j.biomaterials.2011.06.008>
14. B, Bernhardt A, Heinemann S, Stachel A, Meyer M, Gelinsky M 2012: Biomimetically mineralized salmon collagen scaffolds for application in bone tissue engineering. Biomacromolecules 13: 1059-1066
<https://doi.org/10.1021/bm201776r>
15. S, Sekar S, Katheem MF, Krishnakumar S, Sastry TP 2012: Fish scale collagen-a novel material for corneal tissue engineering. Artif Organs 36: 829-835
<https://doi.org/10.1111/j.1525-1594.2012.01452.x>
16. M, Ozturk H, Bulut O, Unsaldi T, Kaloglu C 2005: The effect of definitive continuous distraction employed with the Ilizarov type external fixation system on fracture healing: an experimental rabbit model. Acta Orthop Traumatol Turc 39: 247-257
17. TK, Dighe AS, Lobo PI, Cui Q 2015: Interactions between MSCs and immune cells: implications for bone healing. J Immunol Res 2015: 752510
<https://doi.org/10.1155/2015/752510>
18. X, Lu S, Zhou Y, Winter C, Xu W, Li B, Wang Y 2011: Bone physiology, biomaterial and the effect of mechanical/physical microenvironment on MSC osteogenesis. Cell Mol Bioeng 4: 579-590
<https://doi.org/10.1007/s12195-011-0204-9>
19. RE, Wang L, Skoracki R, Mathur AB 2013: Development of nanomaterials for bone repair and regeneration. J Biomed Mater Res B Appl Biomater 101: 387-397
<https://doi.org/10.1002/jbm.b.32823>
20. R, Uemura T, Xu Z, Yamaguchi I, Ikoma T, Tanaka J 2015: Rapid oriented fibril formation of fish scale collagen fascilitates early osteoblastic differentiation of human mesenchymal stem cells. J Biomed Mater Res A 103: 2531-2539
<https://doi.org/10.1002/jbm.a.35387>
21. M, Michiardi M, Casta–o O, Planell A 2008: Biomaterials in orthopaedics. J R Soc Interface 5: 1137-1158
<https://doi.org/10.1098/rsif.2008.0151>
22. A, Alidadi S, Moshiri A, Maffulli N 2014: Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res 9: 18
<https://doi.org/10.1186/1749-799X-9-18>
23. F, Datta P, Adhikari B, Dhara S, Ghosh K, Das Mohapatra PK 2012: Collagen scaffolds derived from fresh water fish origin and their biocompatibility. J Biomed Mater Res A 100: 1068-1079
<https://doi.org/10.1002/jbm.a.33280>
24. A, Filardo G, Kon E, Marcacci M 2013: Does PRP enhance bone integration with grafts, graft substitutes or implants? A systematic review. BMC Musculoskelet Disord 4: 330
<https://doi.org/10.1186/1471-2474-14-330>
25. SK, Lee BT 2015: Hard tissue regeneration using bone substitutes: an update on innovations in materials. Korean J Intern Med 30: 279-293
<https://doi.org/10.3904/kjim.2015.30.3.279>
26. F, Veronesi F, Maglio M, Della Bella E, Sartori M, Fini M 2015: New and emerging strategies in platelet rich plasma application in musculoskeletal regenerative procedures: general overview on still open questions and outlook. Biomed Res Inj 2015: 846045
27. J, Jungbluth P, Lögters TT, Sager M, Wild M, Hakimi M, Windolf J, Grassmann JP 2015: Treatment of a diaphyseal longbone defect with autologous bone grafts and platelet rich plasma in a rabbit model. Vet Comp Orthop Traumatol 28: 164-171
<https://doi.org/10.3415/VCOT-14-05-0079>
28. MJ, Bowen W, Dhadda P, Markides H, Sidney LE, Taylor AJ, Rose FR, Badylak SF, Shakesheff KM, White LJ 2013: Hydrogels derived from demineralized and decellularized bone extracellular matrix. Acta Biomater 9: 7865-7873
<https://doi.org/10.1016/j.actbio.2013.04.029>
29. TH, Silva JM, Marques ALP, Domingues A, Bayon Y, Reis RL 2014: Marine origin collagens and ItŐs potential applications. Mar Drugs 12: 5881-5901
<https://doi.org/10.3390/md12125881>
30. To Minh Q, Doan Nguyen V, Tran Le, Bao H 2014: Decellularization of xenogenic bone grafts for potential use as tissue engineering scaffolds. IJLSDR 4: 38-46JJLSR
31. TA, Furuya R, Fukuba S, Nakamura M, Suzuki N, Hattori A 2012: Expression of osteoblastic and osteoclastic genes during spontaneous regeneration and autotransplantation of goldfish scale: a new tool to study intramembranous bone regeneration. Bone 50: 1240-1209
<https://doi.org/10.1016/j.bone.2012.03.021>
32. Q, Gu Z, Jamal S, Detamore MS, Berkland C 2013: Hybrid hydroxyapatite nanoparticle colloidal gels are injectable fillers for bone tissue engineering. Tissue Eng Part A 9: 2586-2593
<https://doi.org/10.1089/ten.tea.2013.0075>
33. SH, Yamamoto K, Ikeda T, Yanagiguchi K, Hayashi Y 2014: Potency of fish collagen as a scaffold for regenerative medicine. Biomed Res Int 2014: 302932
<https://doi.org/10.1155/2014/302932>
34. K, Igawa K, Sugimoto K, Yoshizawa Y, Yanagiguchi K, Ikeda T, Yamada S, Hayashi Y 2014: Biological safety of fish (tilapia) collagen. Biomed Res Int 2014: 630757
35. S, Kabadayi C, Ipci SD, Caker G, Kuru B 2011: Treatment of intrabony periodontal defects with platelet-rich plasma versus platelet-poor plasma combined with a bovine-derived xenograft: a controlled clinical trial. J Periodontol 82: 837-844
<https://doi.org/10.1902/jop.2010.100503>
36. F, Wang L, Lin CC, Chou CH, Li L 2014: A cornea substitute derived from fish scale: 6 month follow up on rabbit model. J Ophthalmol 2014: 914542
37. H, Rudich U, Michaeli Geller G, Evron A 2015: Recent advances in bone regeneration using adult stem cells. World J Stem Cells 7: 630-640
<https://doi.org/10.4252/wjsc.v7.i3.630>

