Acta Vet. Brno 2019, 88: 65-71

https://doi.org/10.2754/avb201988010065

The effect of fumonisins producing Fusarium verticillioides on the microbiota in pig caecum

Huu Anh Dang1, Attila Zsolnai1, Melinda Kovács1,2, Brigitta Bóta2, Gábor Mihucz1, Roland Pósa1, Kinga Marosi1, Mariam Kachlek1, Judit Szabó-Fodor2

1Kaposvár University, Faculty of Agricultural and Environmental Sciences, Kaposvár, Hungary
2Kaposvár University, MTA-KE Mycotoxins in the Food Chain Research Group, Kaposvár, Hungary

Received May 30, 2018
Accepted February 12, 2019

References

1. Amann RI, Ludwig W, Schleifer KH 1995: Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59: 143-169
2. Antonissen G, Croubels S, Pasmans F, Ducatelle R, Eeckhaut V, Devreese M, Verlinden M, Haesebrouck F, Eekhout M, De Saeger S, Antlinger B, Novak B, Martel A, Van Immerseel F 2015: Fumonisins affect the intestinal microbial homeostasis in broiler chickens, predisposing to necrotic enteritis. Vet Res 46: 98 <https://doi.org/10.1186/s13567-015-0234-8>
3. Banu OK, George BT, Paul J 2010: Development of a competitive PCR assay for the quantification of total Escherichia coli DNA in water. Afr J Biotechnol 9: 564-572
4. Becker B, Bresch H, Schillinger U, Thiel P 1997: The effect of fumonisin B1 on the growth of bacteria. World J Microbiol Biotechnol 13: 539-543 <https://doi.org/10.1023/A:1018513308847>
5. Bouhet S, Le Dorze E, Peres S, Fairbrother JM, Oswald IP 2006: Mycotoxin fumonisin B1 selectively down-regulates the basal IL-8 expression in pig intestine: in vivo and in vitro studies. Food Chem Toxicol 44: 1768-1773 <https://doi.org/10.1016/j.fct.2006.05.018>
6. Bouhet S, Oswald IP 2007: The intestine as a possible target for fumonisin toxicity. Mol Nutr Food Res 51: 925-931 <https://doi.org/10.1002/mnfr.200600266>
7. Bracarense APF, Lucioli J, Grenier B, Pacheco GD, Moll WD, Schatzmayr G, Oswald IP 2012: Chronic ingestion of deoxynivalenol and fumonisin, alone or in interaction, induces morphological and immunological changes in the intestine of piglets. Br J Nutr 107: 1776-1786 <https://doi.org/10.1017/S0007114511004946>
8. Burel C, Tanguy M, Guerre P, Boilletot E, Cariolet, R, Queguiner M, Postollec G, Pinton P, Salvat G, Oswald IP, Fravalo P 2013: Effect of low dose of fumonisins on pig health: Immune status, intestinal microbiota and sensitivity to Salmonella. Toxins 5: 841-864. <https://doi.org/10.3390/toxins5040841>
9. Casteel SW, Turk JR, Rottinghaus GE 1994: Chronic effects of dietary fumonisin on the heart and pulmonary vasculature of swine. Fundam Appl Toxicol 23: 518-524 <https://doi.org/10.1006/faat.1994.1136>
10. Castillo M, Martín-Orúe SM, Manzanilla EG, Badiola I, Martín M, Gasa J 2006: Quantification of total bacteria, enterobacteria and lactobacilli populations in pig digesta by real-time PCR. Vet Microbiol 114: 165-170 <https://doi.org/10.1016/j.vetmic.2005.11.055>
11. Commission Recommendation, 2006/576/EC: Commission Recommendation 2006: Commission Recommendation of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT2 and fumonisins in products intended for animal feeding (Text with EEA relevance) (2006/576/EC). Official Journal of the European Union, L229/7-9 (23.8.2006)
12. Constable PD, Smith GW, Rottinghaus GE, Haschek WM 2000: Ingestion of fumonisin B1-containing culture material decreases cardiac contractility and mechanical efficiency in swine. Toxicol Appl Pharmacol 162: 151-160 <https://doi.org/10.1006/taap.1999.8831>
13. Cortinovis C, Caloni F, Schreiber NB, Spicer LJ 2014: Effects of fumonisin B1 alone and combined with deoxynivalenol or zearalenone on porcine granulosa cell proliferation and steroid production. Theriogenology 81: 1042-1049 <https://doi.org/10.1016/j.theriogenology.2014.01.027>
14. Dang HA, Zsolnai A, Kovacs M, Bors I, Bonai A, Bota B, Szabo-Fodor J 2017: In vitro interaction between fumonisin B1 and the intestinal microflora of pigs. Pol J Microbiol 66: 245-250 <https://doi.org/10.5604/01.3001.0010.7858>
15. Devriendt B, Gallois M, Verdonck F, Wache Y, Bimczok D, Oswald IP, Goddeeris BM, Cox E 2010: The food contaminant fumonisin B1 reduces the maturation of porcine CD11R1+ intestinal dendritic cells, resulting in a reduced efficiency of oral immunisation and a prolonged intestinal ETEC infection. Paper presented at the 11th International Symposium on Dendritic Cells in Fundamental and Clinical Immunology, Lugano, Switzerland
16. Dilkin P, Direito G, Simas MM, Mallmann CA, Corrêa B 2010: Toxicokinetics and toxicological effects of single oral dose of fumonisin B1 containing Fusarium verticillioides culture material in weaned piglets. Chem Biol Interact 185: 157-162 <https://doi.org/10.1016/j.cbi.2010.03.025>
17. EFSA, 2005: Opinion of the Scientific Panel on Contaminants in Food Chain on a request from the Commission related to fumonisins as undesirable substances in animal feed. The EFSA J 235: 1-32
18. Frese SA, Parker K, Calvert CC, Mills DA 2015: Diet shapes the gut microbiome of pigs during nursing and weaning. Microbiome 3: 28 <https://doi.org/10.1186/s40168-015-0091-8>
19. Gelderblom WC, Jaskiewicz K, Marasas WF, Thiel PG, Horak RM, Vleggaar R, Kriek NP 1988: Fumonisins-novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Appl Environ Microbiol 54: 1806-1811
20. Guo X, Xia X, Tang R, Zhou J, Zhao H, Wang K 2008: Development of a real‐time PCR method for Firmicutes and Bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs. Lett Appl Microbiol 47: 367-373 <https://doi.org/10.1111/j.1472-765X.2008.02408.x>
21. Haschek WM, Gumprecht LA, Smith G, Tumbleson ME, Constable PD 2001: Fumonisin toxicosis in swine: an overview of porcine pulmonary edema and current perspectives. Environ Health Perspect 2: 251-257
22. Heilig HG, Zoetendal EG, Vaughan EE, Marteau P, Akkermans AD, de Vos WM 2002: Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl Environ Microbiol 68: 114-123 <https://doi.org/10.1128/AEM.68.1.114-123.2002>
23. IARC monographs on the evaluation of carcinogenic risks to humans. 1993: Toxins derived from Fusarium moniliforme: fumonisins B1 and B2 and fusarin C. IARC 56: 445-466
24. Isaacson R, Kim HB 2012: The intestinal microbiome of the pig. Anim Health Res Rev 13: 100-109 <https://doi.org/10.1017/S1466252312000084>
25. Kim MS 2011: An integrated investigation of ruminal microbial communities using 16S rRNA gene-based techniques: The Ohio State University. Dissertation, Available at: https://etd.ohiolink.edu/!etd.send_file?accession=osu1316383870&disposition=inline
26. Lallès JP, Lessard M, Boudry G 2009: Intestinal barrier function is modulated by short-term exposure to fumonisin B1 in Ussing chambers. Vet Res Commun 33: 1039 <https://doi.org/10.1007/s11259-009-9310-8>
27. Leser TD, Amenuvor JZ, Jensen TK, Lindecrona RH, Boye M, Møller K 2002: Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl Environ Microbiol 68: 673-690 <https://doi.org/10.1128/AEM.68.2.673-690.2002>
28. Marasas WF 1995: Fumonisins: their implications for human and animal health. Nat Toxins 3: 193-198 <https://doi.org/10.1002/nt.2620030405>
29. Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG 1998: Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64: 795-799
30. Mirhosseini SZ, Seidavi A, Shivazad M, Chamani M, Sadeghi AA, Pourseify R 2010: Detection of Clostridium sp. and its relation to different ages and gastrointestinal segments as measured by molecular analysis of 16S rRNA genes. Braz Arch Biol Technol 53: 69-76 <https://doi.org/10.1590/S1516-89132010000100009>
31. Oswald IP, Desautels C, Laffitte J, Fournout S, Peres SY, Odin M, Le Bars P, Le Bars J, Fairbrother JM 2003: Mycotoxin fumonisin B1 increases intestinal colonization by pathogenic Escherichia coli in pigs. Appl Environ Microbiol 69: 5870-5874 <https://doi.org/10.1128/AEM.69.10.5870-5874.2003>
32. Pajarillo EAB, Chae JP, Balolong MP, Kim HB, Seo KS, Kang DK 2014: Pyrosequencing-based analysis of fecal microbial communities in three purebred pig lines. J Microbiol 52: 646-651 <https://doi.org/10.1007/s12275-014-4270-2>
33. Pers-Kamczyc E, Zmora P, Cieslak A, Szumacher-Strabel M 2011: Development of nucleic acid based techniques and possibilities of their application to rumen microbial ecology research. J Anim Feed Sci 20: 315-337 <https://doi.org/10.22358/jafs/66189/2016>
34. Sghir A, Gramet G, Suau A, Rochet V, Pochart P, Dore J 2000: Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl Environ Microbiol 66: 2263-2266 <https://doi.org/10.1128/AEM.66.5.2263-2266.2000>
35. Su Y, Yao W, Perez-Gutierrez ON, Smidt H, Zhu WY 2008: Changes in abundance of Lactobacillus spp. and Streptococcus suis in the stomach, jejunum and ileum of piglets after weaning. FEMS Microbiol Ecol 66: 546-555 <https://doi.org/10.1111/j.1574-6941.2008.00529.x>
36. Taranu I, Marin DE, Bouhet S, Pascale F, Bailly JD, Miller JD, Pinton P, Oswald IP 2005: Mycotoxin fumonisin B1 alters the cytokine profile and decreases the vaccinal antibody titer in pigs. Toxicol Sci 84: 301-307 <https://doi.org/10.1093/toxsci/kfi086>
37. Tossenberger J, Fébel H, Babinszky L, Gundel J, Halas V, Bódisné-Garbacz Z 2000: Ileal digestibility of amino acids in pigs. 1st paper: determination of ileal digestibility with different methods. Állattenyésztés és Takarmányozás 49: 375-384
38. Voss KA, Smith GW, Haschek WM 2007: Fumonisins: toxicokinetics, mechanism of action and toxicity. Anim. Feed Sci. Technol. 137: 299-325
39. Voss KA, Riley RT, Waes JG 2011: Fumonisins. Chapter 53. Reproductive and Development Toxicology, Edited by Ramesh C. Gupta ISBN: 978-0-12-382032-7
40. Walter J, Tannock G, Tilsala-Timisjarvi A, Rodtong S, Loach D, Munro K, Alatossava T 2000: Detection and identification of gastrointestinal lactobacillus species by using denaturing gradient gel electrophoresis and species-specific PCR primers. Appl Environ Microbiol 66: 297-303 <https://doi.org/10.1128/AEM.66.1.297-303.2000>
41. Wan LY, Turner PC, El-Nezami H 2013: Individual and combined cytotoxic effects of Fusarium toxins (deoxynivalenol, nivalenol, zearalenone and fumonisins B1) on swine jejunal epithelial cells. Food Chem Toxicol 57: 276-283 <https://doi.org/10.1016/j.fct.2013.03.034>
42. Yang YX, Dai ZL, Zhu WY 2014: Important impacts of intestinal bacteria on utilization of dietary amino acids in pigs. Amino Acids 46: 2489-2501 <https://doi.org/10.1007/s00726-014-1807-y>
front cover
  • ISSN 0001-7213 (printed)
  • ISSN 1801-7576 (electronic)

Current issue

Archive