Acta Vet. Brno 2019, 88: 65-71
https://doi.org/10.2754/avb201988010065
The effect of fumonisins producing Fusarium verticillioides on the microbiota in pig caecum
References
1. RI, Ludwig W, Schleifer KH 1995: Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59: 143-169
2. G, Croubels S, Pasmans F, Ducatelle R, Eeckhaut V, Devreese M, Verlinden M, Haesebrouck F, Eekhout M, De Saeger S, Antlinger B, Novak B, Martel A, Van Immerseel F 2015: Fumonisins affect the intestinal microbial homeostasis in broiler chickens, predisposing to necrotic enteritis. Vet Res 46: 98
<https://doi.org/10.1186/s13567-015-0234-8>
3. OK, George BT, Paul J 2010: Development of a competitive PCR assay for the quantification of total Escherichia coli DNA in water. Afr J Biotechnol 9: 564-572
4. B, Bresch H, Schillinger U, Thiel P 1997: The effect of fumonisin B1 on the growth of bacteria. World J Microbiol Biotechnol 13: 539-543
<https://doi.org/10.1023/A:1018513308847>
5. S, Le Dorze E, Peres S, Fairbrother JM, Oswald IP 2006: Mycotoxin fumonisin B1 selectively down-regulates the basal IL-8 expression in pig intestine: in vivo and in vitro studies. Food Chem Toxicol 44: 1768-1773
<https://doi.org/10.1016/j.fct.2006.05.018>
6. S, Oswald IP 2007: The intestine as a possible target for fumonisin toxicity. Mol Nutr Food Res 51: 925-931
<https://doi.org/10.1002/mnfr.200600266>
7. APF, Lucioli J, Grenier B, Pacheco GD, Moll WD, Schatzmayr G, Oswald IP 2012: Chronic ingestion of deoxynivalenol and fumonisin, alone or in interaction, induces morphological and immunological changes in the intestine of piglets. Br J Nutr 107: 1776-1786
<https://doi.org/10.1017/S0007114511004946>
8. C, Tanguy M, Guerre P, Boilletot E, Cariolet, R, Queguiner M, Postollec G, Pinton P, Salvat G, Oswald IP, Fravalo P 2013: Effect of low dose of fumonisins on pig health: Immune status, intestinal microbiota and sensitivity to Salmonella. Toxins 5: 841-864.
<https://doi.org/10.3390/toxins5040841>
9. SW, Turk JR, Rottinghaus GE 1994: Chronic effects of dietary fumonisin on the heart and pulmonary vasculature of swine. Fundam Appl Toxicol 23: 518-524
<https://doi.org/10.1006/faat.1994.1136>
10. M, Martín-Orúe SM, Manzanilla EG, Badiola I, Martín M, Gasa J 2006: Quantification of total bacteria, enterobacteria and lactobacilli populations in pig digesta by real-time PCR. Vet Microbiol 114: 165-170
<https://doi.org/10.1016/j.vetmic.2005.11.055>
11. Commission Recommendation, 2006/576/EC: Commission Recommendation 2006: Commission Recommendation of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT2 and fumonisins in products intended for animal feeding (Text with EEA relevance) (2006/576/EC). Official Journal of the European Union, L229/7-9 (23.8.2006)
12. PD, Smith GW, Rottinghaus GE, Haschek WM 2000: Ingestion of fumonisin B1-containing culture material decreases cardiac contractility and mechanical efficiency in swine. Toxicol Appl Pharmacol 162: 151-160
<https://doi.org/10.1006/taap.1999.8831>
13. C, Caloni F, Schreiber NB, Spicer LJ 2014: Effects of fumonisin B1 alone and combined with deoxynivalenol or zearalenone on porcine granulosa cell proliferation and steroid production. Theriogenology 81: 1042-1049
<https://doi.org/10.1016/j.theriogenology.2014.01.027>
14. HA, Zsolnai A, Kovacs M, Bors I, Bonai A, Bota B, Szabo-Fodor J 2017: In vitro interaction between fumonisin B1 and the intestinal microflora of pigs. Pol J Microbiol 66: 245-250
<https://doi.org/10.5604/01.3001.0010.7858>
15. Devriendt B, Gallois M, Verdonck F, Wache Y, Bimczok D, Oswald IP, Goddeeris BM, Cox E 2010: The food contaminant fumonisin B1 reduces the maturation of porcine CD11R1+ intestinal dendritic cells, resulting in a reduced efficiency of oral immunisation and a prolonged intestinal ETEC infection. Paper presented at the 11th International Symposium on Dendritic Cells in Fundamental and Clinical Immunology, Lugano, Switzerland
16. P, Direito G, Simas MM, Mallmann CA, Corrêa B 2010: Toxicokinetics and toxicological effects of single oral dose of fumonisin B1 containing Fusarium verticillioides culture material in weaned piglets. Chem Biol Interact 185: 157-162
<https://doi.org/10.1016/j.cbi.2010.03.025>
17. EFSA, 2005: Opinion of the Scientific Panel on Contaminants in Food Chain on a request from the Commission related to fumonisins as undesirable substances in animal feed. The EFSA J 235: 1-32
18. SA, Parker K, Calvert CC, Mills DA 2015: Diet shapes the gut microbiome of pigs during nursing and weaning. Microbiome 3: 28
<https://doi.org/10.1186/s40168-015-0091-8>
19. WC, Jaskiewicz K, Marasas WF, Thiel PG, Horak RM, Vleggaar R, Kriek NP 1988: Fumonisins-novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Appl Environ Microbiol 54: 1806-1811
20. X, Xia X, Tang R, Zhou J, Zhao H, Wang K 2008: Development of a real‐time PCR method for Firmicutes and Bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs. Lett Appl Microbiol 47: 367-373
<https://doi.org/10.1111/j.1472-765X.2008.02408.x>
21. WM, Gumprecht LA, Smith G, Tumbleson ME, Constable PD 2001: Fumonisin toxicosis in swine: an overview of porcine pulmonary edema and current perspectives. Environ Health Perspect 2: 251-257
22. HG, Zoetendal EG, Vaughan EE, Marteau P, Akkermans AD, de Vos WM 2002: Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl Environ Microbiol 68: 114-123
<https://doi.org/10.1128/AEM.68.1.114-123.2002>
23. IARC monographs on the evaluation of carcinogenic risks to humans. 1993: Toxins derived from Fusarium moniliforme: fumonisins B1 and B2 and fusarin C. IARC 56: 445-466
24. R, Kim HB 2012: The intestinal microbiome of the pig. Anim Health Res Rev 13: 100-109
<https://doi.org/10.1017/S1466252312000084>
25. Kim MS 2011: An integrated investigation of ruminal microbial communities using 16S rRNA gene-based techniques: The Ohio State University. Dissertation, Available at: https://etd.ohiolink.edu/!etd.send_file?accession=osu1316383870&disposition=inline
26. JP, Lessard M, Boudry G 2009: Intestinal barrier function is modulated by short-term exposure to fumonisin B1 in Ussing chambers. Vet Res Commun 33: 1039
<https://doi.org/10.1007/s11259-009-9310-8>
27. TD, Amenuvor JZ, Jensen TK, Lindecrona RH, Boye M, Møller K 2002: Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl Environ Microbiol 68: 673-690
<https://doi.org/10.1128/AEM.68.2.673-690.2002>
28. WF 1995: Fumonisins: their implications for human and animal health. Nat Toxins 3: 193-198
<https://doi.org/10.1002/nt.2620030405>
29. JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG 1998: Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64: 795-799
30. SZ, Seidavi A, Shivazad M, Chamani M, Sadeghi AA, Pourseify R 2010: Detection of Clostridium sp. and its relation to different ages and gastrointestinal segments as measured by molecular analysis of 16S rRNA genes. Braz Arch Biol Technol 53: 69-76
<https://doi.org/10.1590/S1516-89132010000100009>
31. IP, Desautels C, Laffitte J, Fournout S, Peres SY, Odin M, Le Bars P, Le Bars J, Fairbrother JM 2003: Mycotoxin fumonisin B1 increases intestinal colonization by pathogenic Escherichia coli in pigs. Appl Environ Microbiol 69: 5870-5874
<https://doi.org/10.1128/AEM.69.10.5870-5874.2003>
32. EAB, Chae JP, Balolong MP, Kim HB, Seo KS, Kang DK 2014: Pyrosequencing-based analysis of fecal microbial communities in three purebred pig lines. J Microbiol 52: 646-651
<https://doi.org/10.1007/s12275-014-4270-2>
33. E, Zmora P, Cieslak A, Szumacher-Strabel M 2011: Development of nucleic acid based techniques and possibilities of their application to rumen microbial ecology research. J Anim Feed Sci 20: 315-337
<https://doi.org/10.22358/jafs/66189/2016>
34. A, Gramet G, Suau A, Rochet V, Pochart P, Dore J 2000: Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl Environ Microbiol 66: 2263-2266
<https://doi.org/10.1128/AEM.66.5.2263-2266.2000>
35. Y, Yao W, Perez-Gutierrez ON, Smidt H, Zhu WY 2008: Changes in abundance of Lactobacillus spp. and Streptococcus suis in the stomach, jejunum and ileum of piglets after weaning. FEMS Microbiol Ecol 66: 546-555
<https://doi.org/10.1111/j.1574-6941.2008.00529.x>
36. I, Marin DE, Bouhet S, Pascale F, Bailly JD, Miller JD, Pinton P, Oswald IP 2005: Mycotoxin fumonisin B1 alters the cytokine profile and decreases the vaccinal antibody titer in pigs. Toxicol Sci 84: 301-307
<https://doi.org/10.1093/toxsci/kfi086>
37. J, Fébel H, Babinszky L, Gundel J, Halas V, Bódisné-Garbacz Z 2000: Ileal digestibility of amino acids in pigs. 1st paper: determination of ileal digestibility with different methods. Állattenyésztés és Takarmányozás 49: 375-384
38. KA, Smith GW, Haschek WM 2007: Fumonisins: toxicokinetics, mechanism of action and toxicity. Anim. Feed Sci. Technol. 137: 299-325
39. Voss KA, Riley RT, Waes JG 2011: Fumonisins. Chapter 53. Reproductive and Development Toxicology, Edited by Ramesh C. Gupta ISBN: 978-0-12-382032-7
40. J, Tannock G, Tilsala-Timisjarvi A, Rodtong S, Loach D, Munro K, Alatossava T 2000: Detection and identification of gastrointestinal lactobacillus species by using denaturing gradient gel electrophoresis and species-specific PCR primers. Appl Environ Microbiol 66: 297-303
<https://doi.org/10.1128/AEM.66.1.297-303.2000>
41. LY, Turner PC, El-Nezami H 2013: Individual and combined cytotoxic effects of Fusarium toxins (deoxynivalenol, nivalenol, zearalenone and fumonisins B1) on swine jejunal epithelial cells. Food Chem Toxicol 57: 276-283
<https://doi.org/10.1016/j.fct.2013.03.034>
42. YX, Dai ZL, Zhu WY 2014: Important impacts of intestinal bacteria on utilization of dietary amino acids in pigs. Amino Acids 46: 2489-2501
<https://doi.org/10.1007/s00726-014-1807-y>

