Acta Vet. Brno 2019, 88: 451-471
https://doi.org/10.2754/avb201988040451
Applications of bacterial-synthesized cellulose in veterinary medicine – a review
References
1. 2013: Kefir and health: a contemporary perspective. Crit Rev Food Sci Nutr 53: 422-434
< Z, Wang Y, Ahmad A, Khan ST, Nisa M, Ahmad H, Afreen A https://doi.org/10.1080/10408398.2010.540360>
2. 2014: Bacterial cellulose membranes as drug delivery systems: an in vivo skin compatibility study. Eur J Pharm Biopharm 86: 332-336
< IF, Pereira T, Silva NH, Gomes FP, Silvestre AJ, Freire CS, Sousa Lobo JM, Costa PC https://doi.org/10.1016/j.ejpb.2013.08.008>
3. 2018: Cellulose nanomaterials in biomedical, food, and nutraceutical applications: a review. Macromolecular Symposia 380: 1800115
< A, Gopi S, Thomas S, Haponiuk JT https://doi.org/10.1002/masy.201800115>
4. 2017: Preparation and characterization of resorbable bacterial cellulose membranes treated by electron beam irradiation for guided bone regeneration. Int J Mol Sci 18: 2236
< SJ, Lee SH, Huh JB, Jeong SI, Park JS, Gwon HJ, Kang ES, Jeong CM, Lim YM https://doi.org/10.3390/ijms18112236>
5. 2018: Bacterial cellulose-chitosan-glycerol biocomposite as artificial dura mater candidates for head trauma. JBBBE 36: 7-16
< RS, Widiyanti P, Aminatun https://doi.org/10.4028/www.scientific.net/JBBBE.36.7>
6. 2010: Tissue-engineered conduit using urine-derived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion. Biomaterials 31: 8889-8901
< A, Bharadwaj S, Wu S, Gatenholm P, Atala A, Zhang Y https://doi.org/10.1016/j.biomaterials.2010.07.108>
7. 2019: Toxicity of therapeutic contact lenses based on bacterial cellulose with coatings to provide transparency. Cont Lens Anterior Eye 42: 512-519
< F, do Vale Braido GV, Cavicchioli M, Mendes LS, Specian SS, Franchi LP, Lima Ribeiro SJ, Messaddeq Y, Scarel-Caminaga RM, O Capote, TS https://doi.org/10.1016/j.clae.2019.03.006>
8. 2018: Novel cellulose/hydroxyapatite scaffolds for bone tissue regeneration: In vitro and in vivo study. J Tissue Eng Regen Med 12: 1195-1208
< P, Pranskunas M, Juodzbalys G, Liesiene J, Baniukaitiene O, Afonso A, Sousa Gomes P https://doi.org/10.1002/term.2651>
9. 2016: A multipurpose natural and renewable polymer in medical applications: Bacterial cellulose. Carbohydr Polym 153: 406-420
< HG, da Silva RR, da Silva Barud H, Tercjak A, Gutierrez J, Lustri WR, de Oliveira OB, Ribeiro SJL https://doi.org/10.1016/j.carbpol.2016.07.059>
10. 2011: Bacterial cellulose as laryngeal medialization material: an experimental study. J Voice 25: 765-769
< FC, Olival-Costa H, da Silva L, Pontes PA, Lancellotti CL https://doi.org/10.1016/j.jvoice.2010.07.005>
11. 2018: Comparison of pharyngocutaneous fistula closure with and without bacterial cellulose in a rat model. Auris Nasus Larynx 45: 301-305
< B, Sari M, Binnetoglu A, Yumusakhuylu AC, Filinte D, Tekin IO, Baglam T, Batman AC https://doi.org/10.1016/j.anl.2017.04.005>
12. 2013: Hydroxypropylmethylcellulose films for the ophthalmic delivery of diclofenac sodium. J Pharm Pharmacol 65: 193-200
< S, Nacher A, Mura C, Catalan-Latorre A, Merino V, Merino-Sanjuan M, Diez-Sales O https://doi.org/10.1111/j.2042-7158.2012.01587.x>
13. 2008: Biomechanical evaluation of microbial cellulose (Zoogloea sp.) and expanded polytetrafluoroethylene membranes as implants in repair of produced abdominal wall defects in rats. Acta Cirurgica Brasileira 23: 184-191
< SC, de Baros Coelho AR, Neto JE https://doi.org/10.1590/S0102-86502008000200012>
14. 2013: Description of a novel approach to engineer cartilage with porous bacterial nanocellulose for reconstruction of a human auricle. J Biomater Appl 28: 626-640
< E-M, Sundberg J, Bobbili B, Schwarz S, Gatenholm P, Rotter N https://doi.org/10.1177/0885328212472547>
15. Gea S, Sari RM, Piliang AF, Indrawan DP, Hutapea YA 2018: Study of bacterial cellulose as scaffold on cartilage tissue engineering. Paper presented at the AIP Conference Proceedings.
16. 2015: Advances and prospects in tissue-engineered meniscal scaffolds for meniscus regeneration. Stem Cells Int 2015: 517520
W, Liu S, Zhu Y, Yu C, Lu S, Yuan M, Gao Y, Huang J, Yuan Z, Peng J, Wang A, Wang Y, Chen J, Zhang L, Sui X, Xu W, Guo Q
17. 2019: Cellulose biomaterials for tissue engineering. Front Bioeng Biotechnol 7: 45
< RJ, Pelling AE https://doi.org/10.3389/fbioe.2019.00045>
18. 2015: Urethral reconstruction with a 3D porous bacterial cellulose scaffold seeded with lingual keratinocytes in a rabbit model. Biomed Mater 10: 055005
< JW, Lv XG, Li Z, Song LJ, Feng C, Xie MK, Li C, Li HB, Wang JH, Zhu WD, Chen SY, Wang HP, Xu YM https://doi.org/10.1088/1748-6041/10/5/055005>
19. 2013: Recent advances in bacterial cellulose. Cellulose 21: 1-30
< Y, Zhu C, Yang J, Nie Y, Chen C, Sun D https://doi.org/10.1007/s10570-013-0088-z>
20. 2013: Homologous articular chondrocytes implantation in osteochondral defects of dogs: technique and histopathological evaluation standardization. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 65: 82-90
< L, Brandão C, Mota L, Ranzani J, Ribeiro L, Rossetto V, Padovani C, Felisbino S https://doi.org/10.1590/S0102-09352013000100013>
21. Iamaguti LS, Brandão CVS, Pellizzon CH, Ranzani JJT, Minto BW 2008: Análises histológica e morfométrica do uso de membrana biossintética de celulose em trocleoplastia experimental de cães. Pesquisa Veterinária Brasileira: 195-200
22. Kargozar S, Milan PB, Baino F, Mozafari M 2019: Nanoengineered biomaterials for bone/dental regeneration. In: Nanoengineered Biomaterials for Regenerative Medicine, Elsevier; 2019. pp. 13-38
23. 2013: Bacterial cellulose nanofibrillar patch as a wound healing platform of tympanic membrane perforation. Adv Healthc Mater 2: 1525-1531
< J, Kim SW, Park S, Lim KT, Seonwoo H, Kim Y, Hong BH, Choung YH, Chung JH https://doi.org/10.1002/adhm.201200368>
24. 2001: Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26: 1561-1603
< D, Schumann D, Udhardt U, Marsch S https://doi.org/10.1016/S0079-6700(01)00021-1>
25. 2013: Modified bacterial cellulose tubes for regeneration of damaged peripheral nerves. Arch Med Sci 9: 527-534
< K, Cala J, Grobelski B, Sygut D, Jesionek-Kupnicka D, Kolodziejczyk M, Bielecki S, Pasieka Z https://doi.org/10.5114/aoms.2013.33433>
26. 2017: In vitro and in vivo studies of a novel bacterial cellulose-based acellular bilayer nanocomposite scaffold for the repair of osteochondral defects. Int J Nanomedicine 12: 6437
< JV, Jadhav SH, Bodas DS, Barhanpurkar-Naik A, Wani MR, Paknikar KM, Rajwade JM https://doi.org/10.2147/IJN.S137361>
27. 2015: Bacterial cellulose membrane produced by Acetobacter sp. A10 for burn wound dressing applications. Carbohydr Polym 122: 387-398.
< MH, Kim JE, Go J, Koh EK, Song SH, Son HJ, Kim HS, Yun YH, Jung YJ, Hwang DY https://doi.org/10.1016/j.carbpol.2014.10.049>
28. 2015: The effect of bacterial cellulose membrane compared with collagen membrane on guided bone regeneration. J Adv Prosthodont 7: 484-495
< SH, Lim YM, Jeong SI, An SJ, Kang SS, Jeong CM, Huh JB https://doi.org/10.4047/jap.2015.7.6.484>
29. 2017: Biocompatible bacterial cellulose membrane in dural defect repair of rat. J Mater Sci Mater Med 28: 37
< FM, Pinto FC, Andrade-da-Costa BL, Silva JG, Campos Junior O, Aguiar JL https://doi.org/10.1007/s10856-016-5828-9>
30. 2016: Prevention of esophageal strictures after endoscopic submucosal dissection: a promising therapy using carboxymethyl cellulose sheets. Dig Dis Sci 61: 1763-1769
< GW, Tang J, Liu F, Li ZS https://doi.org/10.1007/s10620-016-4034-4>
31. 2015: Bacterial cellulose-based biomimetic nanofibrous scaffold with muscle cells for hollow organ tissue engineering. ACS Biomater Sci Eng 2: 19-29
< X, Yang J, Feng C, Li Z, Chen S, Xie M, Huang J, Li H, Wang H, Xu Y https://doi.org/10.1021/acsbiomaterials.5b00259>
32. 2010: Experimental lamellar keratoplasty in rabbits using microfibrilar cellulose membrane: clinical, morphological and immunohistochemical findings. Ciência Rural 40: 348-353
< LR, Ribeiro AP, Conceição LFd, Galera PD, Laus JL https://doi.org/10.1590/S0103-84782010000200019>
33. 2018: Bacterial cellulose to reinforce urethrovesical anastomosis. A translational study. Acta Cir Bras 33: 673-683
< G, Albuquerque AV, Martins Filho ED, Lira Neto FT, Souza VSB, Silva AAD, Lira MMM, Lima SVC https://doi.org/10.1590/s0102-865020180080000003>
34. 2012: Small calibre biosynthetic bacterial cellulose blood vessels: 13-months patency in a sheep model. Scand Cardiovasc J 46: 57-62
< CJ, Risberg B, Bodin A, Backdahl H, Johansson BR, Gatenholm P, Jeppsson A https://doi.org/10.3109/14017431.2011.623788>
35. 2019: Bacterial cellulose graft versus fat graft in closure of tympanic membrane perforation. Am J Otolaryngol 40: 168-172
< YMH, Mohammed S, Menem MOA https://doi.org/10.1016/j.amjoto.2018.12.008>
36. 2015: Novel bilayer bacterial nanocellulose scaffold supports neocartilage formation in vitro and in vivo. Biomaterials 44: 122-133
< H, Feldmann E-M, Pleumeekers MM, Nimeskern L, Kuo W, de Jong WC, Schwarz S, Müller R, Hendriks J, Rotter N, van Osch GJVM, Stok KS, Gatenholm P https://doi.org/10.1016/j.biomaterials.2014.12.025>
37. 2014: Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration. Appl Microbiol Biotechnol 98: 7423-7435
< H, Schwarz S, Feldmann EM, Mantas A, von Bomhard A, Gatenholm P, Rotter N https://doi.org/10.1007/s00253-014-5819-z>
38. 2017: Modulating carbohydrate-based hydrogels as viscoelastic lubricant substitute for articular cartilages. Int J Biol Macromol 102: 796-804
< G, Antunes FE, Farra R, Grassi G, Grassi M, Asaro F https://doi.org/10.1016/j.ijbiomac.2017.04.079>
39. 2006: The polyvinyl alcohol–bacterial cellulose system as a new nanocomposite for biomedical applications. J Biomed Mater Res Part B: Applied Biomaterials 79: 245-253
< L, Wan W https://doi.org/10.1002/jbm.b.30535>
40. 2014: Bacterial cellulose/acrylic acid hydrogel synthesized via electron beam irradiation: accelerated burn wound healing in an animal model. Carbohydr Polym 114: 312-320
< N, Mohd Amin MC, Pandey M, Ahmad N, Rajab NF https://doi.org/10.1016/j.carbpol.2014.08.025>
41. 2011: Nanocomposite biomaterial mimicking aortic heart valve leaflet mechanical behaviour. Proc Inst Mech Eng H 225: 718-722
< H https://doi.org/10.1177/0954411911399826>
42. Mohite BV, Koli SH, Patil SV 2019: Bacterial cellulose-based hydrogels: synthesis, properties, and applications. In: Mondal M. (Ed.): Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series. Springer, Cham, pp. 1255-1276
43. 2010: Nasal septal perforation closure with bacterial cellulose in rabbits. Braz J Otorhinolaryngol 76: 442-449
< EEM, Dolci JEL https://doi.org/10.1590/S1808-86942010000400007>
44. 2019: Osteoclast-responsive, injectable bone of bisphosphonated-nanocellulose that regulates osteoclast/osteoblast activity for bone regeneration. Biomacromolecules 20: 1385-1393
< A, Taguchi T https://doi.org/10.1021/acs.biomac.8b01767>
45. 1993: Gengiflex, an alkali-cellulose membrane for GTR: histologic observations. Braz Dent J 4: 65-71
A Jr, Novaes A, Grisi M, Soares UN, Gabarra F
46. 2015: Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration. Carbohydr Polym 128: 41-51
< Barud HG, Barud Hda S, Cavicchioli M, do Amaral TS, de Oliveira Junior OB, Santos DM, Petersen AL, Celes F, Borges VM, de Oliveira CI, de Oliveira PF, Furtado RA, Tavares DC, Ribeiro SJ https://doi.org/10.1016/j.carbpol.2015.04.007>
47. 2011: Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol 91: 1277-1286
< N, Gatenholm P https://doi.org/10.1007/s00253-011-3432-y>
48. 2017: Bacterial cellulose in biomedical applications: A review. Int J Biol Macromol 104: 97-106
< GF, Pirich CL, Sierakowski MR, Woehl MA, Sakakibara CN, de Souza CF, Martin AA, da Silva R, de Freitas RA https://doi.org/10.1016/j.ijbiomac.2017.05.171>
49. 2015: Bacterial cellulose-hydroxyapatite composites with osteogenic growth peptide (OGP) or pentapeptide OGP on bone regeneration in critical-size calvarial defect model. J Biomed Mater Res A 103: 3397-3406
< SC, de Oliveira GJ, Finoti LS, Nepomuceno R, Spolidorio LC, Rossa C Jr, Ribeiro SJ, Saska S, Scarel-Caminaga RM https://doi.org/10.1002/jbm.a.35472>
50. 2016: Bacterial cellulose and bacterial cellulose-vaccarin membranes for wound healing. Mater Sci Eng C Mater Biol Appl 59: 303-309
< Y, Qiu L, Cui J, Wei Q https://doi.org/10.1016/j.msec.2015.10.016>
51. 2015: Applications of bacterial cellulose and its composites in biomedicine. Appl Microbiol Biotechnol 99: 2491-2511
< JM, Paknikar KM, Kumbhar JV https://doi.org/10.1007/s00253-015-6426-3>
52. 2019: The growing merits and dwindling limitations of bacterial cellulose-based tissue engineering scaffolds. Curr Opin Chem Eng 24: 98-106
< M, Haring AP, Bertucio TJ https://doi.org/10.1016/j.coche.2019.03.006>
53. 2013: Hydroxyapatite delivery to dentine tubules using carboxymethyl cellulose dental hydrogel for treatment of dentine hypersensitivity. J Biomed Sci Eng 6: 987-995
< A, Franco RA, Seo HS, Lee BT https://doi.org/10.4236/jbise.2013.610123>
54. 2019: Development of modified montmorillonite-bacterial cellulose nanocomposites as a novel substitute for burn skin and tissue regeneration. Carbohydr Polym 206: 548-556
< W, Khan T, Ul-Islam M, Khan R, Hussain Z, Khalid A, Wahid F https://doi.org/10.1016/j.carbpol.2018.11.023>
55. 2011: Bacterial cellulose-hydroxyapatite nanocomposites for bone regeneration. Int J Biomater 2011: 175362
< S, Barud HS, Gaspar AM, Marchetto R, Ribeiro SJ, Messaddeq Y https://doi.org/10.1155/2011/175362>
56. 2012: Bacterial cellulose-collagen nanocomposite for bone tissue engineering. J Mater Chem 22: 22102
< S, Teixeira LN, Tambasco de Oliveira P, Minarelli Gaspar AM, Lima Ribeiro SJ, Messaddeq Y, Marchetto R https://doi.org/10.1039/c2jm33762b>
57. 2014: In vivo application of tissue-engineered blood vessels of bacterial cellulose as small arterial substitutes: proof of concept? J Surg Res 189: 340-347
< M, Reutter S, Klemm D, Sterner-Kock A, Guschlbauer M, Richter T, Langebartels G, Madershahian N, Wahlers T, Wippermann J https://doi.org/10.1016/j.jss.2014.02.011>
58. 2016: Bacterial cellulose and bacterial cellulose/polycaprolactone composite as tissue substitutes in rabbits’ cornea. Pesquisa Veterinária Brasileira 36: 986-992
< RV, Valente FL, Reis ECC, Araújo FR, Eleotério RB, Queiroz PVS Borges APB https://doi.org/10.1590/s0100-736x2016001000011>
59. 2016: Morphological, physical, antimicrobial and release properties of ZnO nanoparticles-loaded bacterial cellulose films. Carbohydr Polym 149: 8-19
< Jebel F, Almasi H https://doi.org/10.1016/j.carbpol.2016.04.089>
60. 2012: The osteogenesis of bacterial cellulose scaffold loaded with bone morphogenetic protein-2. Biomaterials 33: 6644-6649
< Q, Li Y, Sun J, Zhang H, Chen L, Chen B, Yang H, Wang Z https://doi.org/10.1016/j.biomaterials.2012.05.071>
61. 2016: Bioprosthetic mesh of bacterial cellulose for treatment of abdominal muscle aponeurotic defect in rat model. J Mater Sci Mater Med 27: 129
< RK, Coelho AR, Pinto FC, de Albuquerque AV, de Melo Filho DA, de Andrade Aguiar JL https://doi.org/10.1007/s10856-016-5744-z>
62. 2015: Bacterial cellulose as a material for wound treatment: Properties and modifications. A review. Biotechnol Adv 33: 1547-1571
< I, Henniges U, Rosenau T, Potthast A https://doi.org/10.1016/j.biotechadv.2015.07.009>
63. 2015: Inducing tissue specific tolerance in autoimmune disease with tolerogenic dendritic cells. Clin Exp Rheumatol 33: S97-S103
J, Toes R, Nikolic T, Roep B
64. 2014: Comparison of biomechanical properties of native menisci and bacterial cellulose implant. Int J Polym Mater 63: 891-897
< ML, Vest N, Ferguson CM, Gatenholm P https://doi.org/10.1080/00914037.2014.886226>
65. 2012: Bacterial cellulose-MMTs nanoreinforced composite films: novel wound dressing material with antibacterial properties. Cellulose 20: 589-596
< M, Khan T, Khattak WA, Park JK https://doi.org/10.1007/s10570-012-9849-3>
66. 2016: Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohydr Polym 150: 330-352
< H, Wahid F, Santos HA, Khan T https://doi.org/10.1016/j.carbpol.2016.05.029>
67. 2010: Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial. Mat Sci Eng C 30: 214-218
< J, Gao C, Zhang Y, Wan Y https://doi.org/10.1016/j.msec.2009.10.006>
68. 2018: Patency and in vivo compatibility of bacterial nanocellulose grafts as small-diameter vascular substitute. J Vasc Surg 68: 177S-187S
< C, Reinhardt S, Eghbalzadeh K, Wacker M, Guschlbauer M, Maul A, Sterner-Kock A, Wahlers T, Wippermann J, Scherner M https://doi.org/10.1016/j.jvs.2017.09.038>
69. 2009: Preliminary results of small arterial substitute performed with a new cylindrical biomaterial composed of bacterial cellulose. Eur J Vasc Endovasc Surg 37: 592-596
< J, Schumann D, Klemm D, Kosmehl H, Salehi-Gelani S, Wahlers T https://doi.org/10.1016/j.ejvs.2009.01.007>
70. 2019: Simultaneous 3D cell distribution and bioactivity enhancement of bacterial cellulose (BC) scaffold for articular cartilage tissue engineering. Cellulose 26: 2513-2528
< J, Yin N, Chen S, Weibel DB, Wang H https://doi.org/10.1007/s10570-018-02240-9>
71. 2014: Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: investigation in vitro and in vivo. Biomed Mater 9: 035005
< J, Zheng Y, Wen X, Lin Q, Chen X, Wu Z https://doi.org/10.1088/1748-6041/9/3/035005>
72. 2014: Bacterial cellulose membranes used as artificial substitutes for dural defection in rabbits. Int J Mol Sci 15: 10855-10867
< C, Ma X, Chen S, Tao M, Yuan L, Jing Y https://doi.org/10.3390/ijms150610855>
73. 2012: Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: Effect of fermentation carbon sources of bacterial cellulose. Carbohydr Polym 87: 839-845
< G, Xie J, Hong F, Cao Z, Yang X https://doi.org/10.1016/j.carbpol.2011.08.079>
74. 2013: Applicability of bacterial cellulose as an alternative to paper points in endodontic treatment. Acta Biomater 9: 6116-6122
< A, Tabuchi M, Uo M, Tatsumi H, Hideshima K, Kondo S, Sekine J https://doi.org/10.1016/j.actbio.2012.12.022>
75. 2010: Microporous bacterial cellulose as a potential scaffold for bone regeneration. Acta Biomater 6: 2540-2547
< M, Bodin A, Backdahl H, Popp J, Goldstein A, Gatenholm P https://doi.org/10.1016/j.actbio.2010.01.004>
76. 2014: Study of osteogenic differentiation of human adipose-derived stem cells (HASCs) on bacterial cellulose. Carbohydr Polym 104: 158-165
< S, Zhuo Q, Chang X, Qiu G, Wu Z, Yang G https://doi.org/10.1016/j.carbpol.2014.01.019>
77. 2018: Early morphological changes in tissues when replacing abdominal wall defects by bacterial nanocellulose in experimental trials. J Mater Sci: Mater Med 29: 95
AN, Lubyansky VG, Gladysheva EK, Skiba EA, Budaeva VV, Semyonova EN, Zharikov AA, Sakovich GV
78. 2014: Kombucha-synthesized bacterial cellulose: preparation, characterization, and biocompatibility evaluation. J Biomed Mater Res A 102: 1548-1557
< C, Li F, Zhou X, Lin L, Zhang T https://doi.org/10.1002/jbm.a.34796>
79. 2015a: Esophageal replacement by hydroxylated bacterial cellulose patch in a rabbit model. Turk J Med Sci 45: 762-770
< C, Liu F, Qian W, Wang Y, You Q, Zhang T, Li F https://doi.org/10.3906/sag-1407-140>
80. 2015b: In-situ biopreparation of biocompatible bacterial cellulose/graphene oxide composites pellets. Appl Surf Sci 338: 22-26
< W, Li W, He Y, Duan T https://doi.org/10.1016/j.apsusc.2015.02.030>
81. 2011: Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications. Mater Sci Eng C 31: 43-49
< KA, LeBlanc JM, Sheets KT, Fox RW, Gatenholm P https://doi.org/10.1016/j.msec.2009.10.007>