Acta Vet. Brno 2019, 88: 451-471

https://doi.org/10.2754/avb201988040451

Applications of bacterial-synthesized cellulose in veterinary medicine – a review

Ioana Maria Bodea1, Giorgiana Mihaela Cătunescu2, Teodor Florian Stroe1, Sonia Alexandra Dîrlea1, Florin Ioan Beteg1

1University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Veterinary Medicine, Cluj-Napoca, Romania
2University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Agriculture, Cluj-Napoca, Romania

Received November 13, 2018
Accepted October 29, 2019

References

1. Ahmed Z, Wang Y, Ahmad A, Khan ST, Nisa M, Ahmad H, Afreen A 2013: Kefir and health: a contemporary perspective. Crit Rev Food Sci Nutr 53: 422-434 <https://doi.org/10.1080/10408398.2010.540360>
2. Almeida IF, Pereira T, Silva NH, Gomes FP, Silvestre AJ, Freire CS, Sousa Lobo JM, Costa PC 2014: Bacterial cellulose membranes as drug delivery systems: an in vivo skin compatibility study. Eur J Pharm Biopharm 86: 332-336 <https://doi.org/10.1016/j.ejpb.2013.08.008>
3. Amalraj A, Gopi S, Thomas S, Haponiuk JT 2018: Cellulose nanomaterials in biomedical, food, and nutraceutical applications: a review. Macromolecular Symposia 380: 1800115 <https://doi.org/10.1002/masy.201800115>
4. An SJ, Lee SH, Huh JB, Jeong SI, Park JS, Gwon HJ, Kang ES, Jeong CM, Lim YM 2017: Preparation and characterization of resorbable bacterial cellulose membranes treated by electron beam irradiation for guided bone regeneration. Int J Mol Sci 18: 2236 <https://doi.org/10.3390/ijms18112236>
5. Angtika RS, Widiyanti P, Aminatun 2018: Bacterial cellulose-chitosan-glycerol biocomposite as artificial dura mater candidates for head trauma. JBBBE 36: 7-16 <https://doi.org/10.4028/www.scientific.net/JBBBE.36.7>
6. Bodin A, Bharadwaj S, Wu S, Gatenholm P, Atala A, Zhang Y 2010: Tissue-engineered conduit using urine-derived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion. Biomaterials 31: 8889-8901 <https://doi.org/10.1016/j.biomaterials.2010.07.108>
7. Coelho F, do Vale Braido GV, Cavicchioli M, Mendes LS, Specian SS, Franchi LP, Lima Ribeiro SJ, Messaddeq Y, Scarel-Caminaga RM, O Capote, TS 2019: Toxicity of therapeutic contact lenses based on bacterial cellulose with coatings to provide transparency. Cont Lens Anterior Eye 42: 512-519 <https://doi.org/10.1016/j.clae.2019.03.006>
8. Daugela P, Pranskunas M, Juodzbalys G, Liesiene J, Baniukaitiene O, Afonso A, Sousa Gomes P 2018: Novel cellulose/hydroxyapatite scaffolds for bone tissue regeneration: In vitro and in vivo study. J Tissue Eng Regen Med 12: 1195-1208 <https://doi.org/10.1002/term.2651>
9. de Oliveira Barud HG, da Silva RR, da Silva Barud H, Tercjak A, Gutierrez J, Lustri WR, de Oliveira OB, Ribeiro SJL 2016: A multipurpose natural and renewable polymer in medical applications: Bacterial cellulose. Carbohydr Polym 153: 406-420 <https://doi.org/10.1016/j.carbpol.2016.07.059>
10. de Souza FC, Olival-Costa H, da Silva L, Pontes PA, Lancellotti CL 2011: Bacterial cellulose as laryngeal medialization material: an experimental study. J Voice 25: 765-769 <https://doi.org/10.1016/j.jvoice.2010.07.005>
11. Demir B, Sari M, Binnetoglu A, Yumusakhuylu AC, Filinte D, Tekin IO, Baglam T, Batman AC 2018: Comparison of pharyngocutaneous fistula closure with and without bacterial cellulose in a rat model. Auris Nasus Larynx 45: 301-305 <https://doi.org/10.1016/j.anl.2017.04.005>
12. El-Sousi S, Nacher A, Mura C, Catalan-Latorre A, Merino V, Merino-Sanjuan M, Diez-Sales O 2013: Hydroxypropylmethylcellulose films for the ophthalmic delivery of diclofenac sodium. J Pharm Pharmacol 65: 193-200 <https://doi.org/10.1111/j.2042-7158.2012.01587.x>
13. Falcão SC, de Baros Coelho AR, Neto JE 2008: Biomechanical evaluation of microbial cellulose (Zoogloea sp.) and expanded polytetrafluoroethylene membranes as implants in repair of produced abdominal wall defects in rats. Acta Cirurgica Brasileira 23: 184-191 <https://doi.org/10.1590/S0102-86502008000200012>
14. Feldmann E-M, Sundberg J, Bobbili B, Schwarz S, Gatenholm P, Rotter N 2013: Description of a novel approach to engineer cartilage with porous bacterial nanocellulose for reconstruction of a human auricle. J Biomater Appl 28: 626-640 <https://doi.org/10.1177/0885328212472547>
15. Gea S, Sari RM, Piliang AF, Indrawan DP, Hutapea YA 2018: Study of bacterial cellulose as scaffold on cartilage tissue engineering. Paper presented at the AIP Conference Proceedings.
16. Guo W, Liu S, Zhu Y, Yu C, Lu S, Yuan M, Gao Y, Huang J, Yuan Z, Peng J, Wang A, Wang Y, Chen J, Zhang L, Sui X, Xu W, Guo Q 2015: Advances and prospects in tissue-engineered meniscal scaffolds for meniscus regeneration. Stem Cells Int 2015: 517520
17. Hickey RJ, Pelling AE 2019: Cellulose biomaterials for tissue engineering. Front Bioeng Biotechnol 7: 45 <https://doi.org/10.3389/fbioe.2019.00045>
18. Huang JW, Lv XG, Li Z, Song LJ, Feng C, Xie MK, Li C, Li HB, Wang JH, Zhu WD, Chen SY, Wang HP, Xu YM 2015: Urethral reconstruction with a 3D porous bacterial cellulose scaffold seeded with lingual keratinocytes in a rabbit model. Biomed Mater 10: 055005 <https://doi.org/10.1088/1748-6041/10/5/055005>
19. Huang Y, Zhu C, Yang J, Nie Y, Chen C, Sun D 2013: Recent advances in bacterial cellulose. Cellulose 21: 1-30 <https://doi.org/10.1007/s10570-013-0088-z>
20. Iamaguti L, Brandão C, Mota L, Ranzani J, Ribeiro L, Rossetto V, Padovani C, Felisbino S 2013: Homologous articular chondrocytes implantation in osteochondral defects of dogs: technique and histopathological evaluation standardization. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 65: 82-90 <https://doi.org/10.1590/S0102-09352013000100013>
21. Iamaguti LS, Brandão CVS, Pellizzon CH, Ranzani JJT, Minto BW 2008: Análises histológica e morfométrica do uso de membrana biossintética de celulose em trocleoplastia experimental de cães. Pesquisa Veterinária Brasileira: 195-200
22. Kargozar S, Milan PB, Baino F, Mozafari M 2019: Nanoengineered biomaterials for bone/dental regeneration. In: Nanoengineered Biomaterials for Regenerative Medicine, Elsevier; 2019. pp. 13-38
23. Kim J, Kim SW, Park S, Lim KT, Seonwoo H, Kim Y, Hong BH, Choung YH, Chung JH 2013: Bacterial cellulose nanofibrillar patch as a wound healing platform of tympanic membrane perforation. Adv Healthc Mater 2: 1525-1531 <https://doi.org/10.1002/adhm.201200368>
24. Klemm D, Schumann D, Udhardt U, Marsch S 2001: Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26: 1561-1603 <https://doi.org/10.1016/S0079-6700(01)00021-1>
25. Kowalska-Ludwicka K, Cala J, Grobelski B, Sygut D, Jesionek-Kupnicka D, Kolodziejczyk M, Bielecki S, Pasieka Z 2013: Modified bacterial cellulose tubes for regeneration of damaged peripheral nerves. Arch Med Sci 9: 527-534 <https://doi.org/10.5114/aoms.2013.33433>
26. Kumbhar JV, Jadhav SH, Bodas DS, Barhanpurkar-Naik A, Wani MR, Paknikar KM, Rajwade JM 2017: In vitro and in vivo studies of a novel bacterial cellulose-based acellular bilayer nanocomposite scaffold for the repair of osteochondral defects. Int J Nanomedicine 12: 6437 <https://doi.org/10.2147/IJN.S137361>
27. Kwak MH, Kim JE, Go J, Koh EK, Song SH, Son HJ, Kim HS, Yun YH, Jung YJ, Hwang DY 2015: Bacterial cellulose membrane produced by Acetobacter sp. A10 for burn wound dressing applications. Carbohydr Polym 122: 387-398. <https://doi.org/10.1016/j.carbpol.2014.10.049>
28. Lee SH, Lim YM, Jeong SI, An SJ, Kang SS, Jeong CM, Huh JB 2015: The effect of bacterial cellulose membrane compared with collagen membrane on guided bone regeneration. J Adv Prosthodont 7: 484-495 <https://doi.org/10.4047/jap.2015.7.6.484>
29. Lima FM, Pinto FC, Andrade-da-Costa BL, Silva JG, Campos Junior O, Aguiar JL 2017: Biocompatible bacterial cellulose membrane in dural defect repair of rat. J Mater Sci Mater Med 28: 37 <https://doi.org/10.1007/s10856-016-5828-9>
30. Lua GW, Tang J, Liu F, Li ZS 2016: Prevention of esophageal strictures after endoscopic submucosal dissection: a promising therapy using carboxymethyl cellulose sheets. Dig Dis Sci 61: 1763-1769 <https://doi.org/10.1007/s10620-016-4034-4>
31. Lv X, Yang J, Feng C, Li Z, Chen S, Xie M, Huang J, Li H, Wang H, Xu Y 2015: Bacterial cellulose-based biomimetic nanofibrous scaffold with muscle cells for hollow organ tissue engineering. ACS Biomater Sci Eng 2: 19-29 <https://doi.org/10.1021/acsbiomaterials.5b00259>
32. Macedo LR, Ribeiro AP, Conceição LFd, Galera PD, Laus JL 2010: Experimental lamellar keratoplasty in rabbits using microfibrilar cellulose membrane: clinical, morphological and immunohistochemical findings. Ciência Rural 40: 348-353 <https://doi.org/10.1590/S0103-84782010000200019>
33. Maia G, Albuquerque AV, Martins Filho ED, Lira Neto FT, Souza VSB, Silva AAD, Lira MMM, Lima SVC 2018: Bacterial cellulose to reinforce urethrovesical anastomosis. A translational study. Acta Cir Bras 33: 673-683 <https://doi.org/10.1590/s0102-865020180080000003>
34. Malm CJ, Risberg B, Bodin A, Backdahl H, Johansson BR, Gatenholm P, Jeppsson A 2012: Small calibre biosynthetic bacterial cellulose blood vessels: 13-months patency in a sheep model. Scand Cardiovasc J 46: 57-62 <https://doi.org/10.3109/14017431.2011.623788>
35. Mandour YMH, Mohammed S, Menem MOA 2019: Bacterial cellulose graft versus fat graft in closure of tympanic membrane perforation. Am J Otolaryngol 40: 168-172 <https://doi.org/10.1016/j.amjoto.2018.12.008>
36. Martínez Ávila H, Feldmann E-M, Pleumeekers MM, Nimeskern L, Kuo W, de Jong WC, Schwarz S, Müller R, Hendriks J, Rotter N, van Osch GJVM, Stok KS, Gatenholm P 2015: Novel bilayer bacterial nanocellulose scaffold supports neocartilage formation in vitro and in vivo. Biomaterials 44: 122-133 <https://doi.org/10.1016/j.biomaterials.2014.12.025>
37. Martinez Avila H, Schwarz S, Feldmann EM, Mantas A, von Bomhard A, Gatenholm P, Rotter N 2014: Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration. Appl Microbiol Biotechnol 98: 7423-7435 <https://doi.org/10.1007/s00253-014-5819-z>
38. Milcovich G, Antunes FE, Farra R, Grassi G, Grassi M, Asaro F 2017: Modulating carbohydrate-based hydrogels as viscoelastic lubricant substitute for articular cartilages. Int J Biol Macromol 102: 796-804 <https://doi.org/10.1016/j.ijbiomac.2017.04.079>
39. Millon L, Wan W 2006: The polyvinyl alcohol–bacterial cellulose system as a new nanocomposite for biomedical applications. J Biomed Mater Res Part B: Applied Biomaterials 79: 245-253 <https://doi.org/10.1002/jbm.b.30535>
40. Mohamad N, Mohd Amin MC, Pandey M, Ahmad N, Rajab NF 2014: Bacterial cellulose/acrylic acid hydrogel synthesized via electron beam irradiation: accelerated burn wound healing in an animal model. Carbohydr Polym 114: 312-320 <https://doi.org/10.1016/j.carbpol.2014.08.025>
41. Mohammadi H 2011: Nanocomposite biomaterial mimicking aortic heart valve leaflet mechanical behaviour. Proc Inst Mech Eng H 225: 718-722 <https://doi.org/10.1177/0954411911399826>
42. Mohite BV, Koli SH, Patil SV 2019: Bacterial cellulose-based hydrogels: synthesis, properties, and applications. In: Mondal M. (Ed.): Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series. Springer, Cham, pp. 1255-1276
43. Neto EEM, Dolci JEL 2010: Nasal septal perforation closure with bacterial cellulose in rabbits. Braz J Otorhinolaryngol 76: 442-449 <https://doi.org/10.1590/S1808-86942010000400007>
44. Nishiguchi A, Taguchi T 2019: Osteoclast-responsive, injectable bone of bisphosphonated-nanocellulose that regulates osteoclast/osteoblast activity for bone regeneration. Biomacromolecules 20: 1385-1393 <https://doi.org/10.1021/acs.biomac.8b01767>
45. Novaes A Jr, Novaes A, Grisi M, Soares UN, Gabarra F 1993: Gengiflex, an alkali-cellulose membrane for GTR: histologic observations. Braz Dent J 4: 65-71
46. Oliveira Barud HG, Barud Hda S, Cavicchioli M, do Amaral TS, de Oliveira Junior OB, Santos DM, Petersen AL, Celes F, Borges VM, de Oliveira CI, de Oliveira PF, Furtado RA, Tavares DC, Ribeiro SJ 2015: Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration. Carbohydr Polym 128: 41-51 <https://doi.org/10.1016/j.carbpol.2015.04.007>
47. Petersen N, Gatenholm P 2011: Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol 91: 1277-1286 <https://doi.org/10.1007/s00253-011-3432-y>
48. Picheth GF, Pirich CL, Sierakowski MR, Woehl MA, Sakakibara CN, de Souza CF, Martin AA, da Silva R, de Freitas RA 2017: Bacterial cellulose in biomedical applications: A review. Int J Biol Macromol 104: 97-106 <https://doi.org/10.1016/j.ijbiomac.2017.05.171>
49. Pigossi SC, de Oliveira GJ, Finoti LS, Nepomuceno R, Spolidorio LC, Rossa C Jr, Ribeiro SJ, Saska S, Scarel-Caminaga RM 2015: Bacterial cellulose-hydroxyapatite composites with osteogenic growth peptide (OGP) or pentapeptide OGP on bone regeneration in critical-size calvarial defect model. J Biomed Mater Res A 103: 3397-3406 <https://doi.org/10.1002/jbm.a.35472>
50. Qiu Y, Qiu L, Cui J, Wei Q 2016: Bacterial cellulose and bacterial cellulose-vaccarin membranes for wound healing. Mater Sci Eng C Mater Biol Appl 59: 303-309 <https://doi.org/10.1016/j.msec.2015.10.016>
51. Rajwade JM, Paknikar KM, Kumbhar JV 2015: Applications of bacterial cellulose and its composites in biomedicine. Appl Microbiol Biotechnol 99: 2491-2511 <https://doi.org/10.1007/s00253-015-6426-3>
52. Roman M, Haring AP, Bertucio TJ 2019: The growing merits and dwindling limitations of bacterial cellulose-based tissue engineering scaffolds. Curr Opin Chem Eng 24: 98-106 <https://doi.org/10.1016/j.coche.2019.03.006>
53. Sadiasa A, Franco RA, Seo HS, Lee BT 2013: Hydroxyapatite delivery to dentine tubules using carboxymethyl cellulose dental hydrogel for treatment of dentine hypersensitivity. J Biomed Sci Eng 6: 987-995 <https://doi.org/10.4236/jbise.2013.610123>
54. Sajjad W, Khan T, Ul-Islam M, Khan R, Hussain Z, Khalid A, Wahid F 2019: Development of modified montmorillonite-bacterial cellulose nanocomposites as a novel substitute for burn skin and tissue regeneration. Carbohydr Polym 206: 548-556 <https://doi.org/10.1016/j.carbpol.2018.11.023>
55. Saska S, Barud HS, Gaspar AM, Marchetto R, Ribeiro SJ, Messaddeq Y 2011: Bacterial cellulose-hydroxyapatite nanocomposites for bone regeneration. Int J Biomater 2011: 175362 <https://doi.org/10.1155/2011/175362>
56. Saska S, Teixeira LN, Tambasco de Oliveira P, Minarelli Gaspar AM, Lima Ribeiro SJ, Messaddeq Y, Marchetto R 2012: Bacterial cellulose-collagen nanocomposite for bone tissue engineering. J Mater Chem 22: 22102 <https://doi.org/10.1039/c2jm33762b>
57. Scherner M, Reutter S, Klemm D, Sterner-Kock A, Guschlbauer M, Richter T, Langebartels G, Madershahian N, Wahlers T, Wippermann J 2014: In vivo application of tissue-engineered blood vessels of bacterial cellulose as small arterial substitutes: proof of concept? J Surg Res 189: 340-347 <https://doi.org/10.1016/j.jss.2014.02.011>
58. Sepúlveda RV, Valente FL, Reis ECC, Araújo FR, Eleotério RB, Queiroz PVS Borges APB 2016: Bacterial cellulose and bacterial cellulose/polycaprolactone composite as tissue substitutes in rabbits’ cornea. Pesquisa Veterinária Brasileira 36: 986-992 <https://doi.org/10.1590/s0100-736x2016001000011>
59. Shahmohammadi Jebel F, Almasi H 2016: Morphological, physical, antimicrobial and release properties of ZnO nanoparticles-loaded bacterial cellulose films. Carbohydr Polym 149: 8-19 <https://doi.org/10.1016/j.carbpol.2016.04.089>
60. Shi Q, Li Y, Sun J, Zhang H, Chen L, Chen B, Yang H, Wang Z 2012: The osteogenesis of bacterial cellulose scaffold loaded with bone morphogenetic protein-2. Biomaterials 33: 6644-6649 <https://doi.org/10.1016/j.biomaterials.2012.05.071>
61. Silveira RK, Coelho AR, Pinto FC, de Albuquerque AV, de Melo Filho DA, de Andrade Aguiar JL 2016: Bioprosthetic mesh of bacterial cellulose for treatment of abdominal muscle aponeurotic defect in rat model. J Mater Sci Mater Med 27: 129 <https://doi.org/10.1007/s10856-016-5744-z>
62. Sulaeva I, Henniges U, Rosenau T, Potthast A 2015: Bacterial cellulose as a material for wound treatment: Properties and modifications. A review. Biotechnol Adv 33: 1547-1571 <https://doi.org/10.1016/j.biotechadv.2015.07.009>
63. Suwandi J, Toes R, Nikolic T, Roep B 2015: Inducing tissue specific tolerance in autoimmune disease with tolerogenic dendritic cells. Clin Exp Rheumatol 33: S97-S103
64. Tanaka ML, Vest N, Ferguson CM, Gatenholm P 2014: Comparison of biomechanical properties of native menisci and bacterial cellulose implant. Int J Polym Mater 63: 891-897 <https://doi.org/10.1080/00914037.2014.886226>
65. Ul-Islam M, Khan T, Khattak WA, Park JK 2012: Bacterial cellulose-MMTs nanoreinforced composite films: novel wound dressing material with antibacterial properties. Cellulose 20: 589-596 <https://doi.org/10.1007/s10570-012-9849-3>
66. Ullah H, Wahid F, Santos HA, Khan T 2016: Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohydr Polym 150: 330-352 <https://doi.org/10.1016/j.carbpol.2016.05.029>
67. Wang J, Gao C, Zhang Y, Wan Y 2010: Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial. Mat Sci Eng C 30: 214-218 <https://doi.org/10.1016/j.msec.2009.10.006>
68. Weber C, Reinhardt S, Eghbalzadeh K, Wacker M, Guschlbauer M, Maul A, Sterner-Kock A, Wahlers T, Wippermann J, Scherner M 2018: Patency and in vivo compatibility of bacterial nanocellulose grafts as small-diameter vascular substitute. J Vasc Surg 68: 177S-187S <https://doi.org/10.1016/j.jvs.2017.09.038>
69. Wippermann J, Schumann D, Klemm D, Kosmehl H, Salehi-Gelani S, Wahlers T 2009: Preliminary results of small arterial substitute performed with a new cylindrical biomaterial composed of bacterial cellulose. Eur J Vasc Endovasc Surg 37: 592-596 <https://doi.org/10.1016/j.ejvs.2009.01.007>
70. Wu J, Yin N, Chen S, Weibel DB, Wang H 2019: Simultaneous 3D cell distribution and bioactivity enhancement of bacterial cellulose (BC) scaffold for articular cartilage tissue engineering. Cellulose 26: 2513-2528 <https://doi.org/10.1007/s10570-018-02240-9>
71. Wu J, Zheng Y, Wen X, Lin Q, Chen X, Wu Z 2014: Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: investigation in vitro and in vivo. Biomed Mater 9: 035005 <https://doi.org/10.1088/1748-6041/9/3/035005>
72. Xu C, Ma X, Chen S, Tao M, Yuan L, Jing Y 2014: Bacterial cellulose membranes used as artificial substitutes for dural defection in rabbits. Int J Mol Sci 15: 10855-10867 <https://doi.org/10.3390/ijms150610855>
73. Yang G, Xie J, Hong F, Cao Z, Yang X 2012: Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: Effect of fermentation carbon sources of bacterial cellulose. Carbohydr Polym 87: 839-845 <https://doi.org/10.1016/j.carbpol.2011.08.079>
74. Yoshino A, Tabuchi M, Uo M, Tatsumi H, Hideshima K, Kondo S, Sekine J 2013: Applicability of bacterial cellulose as an alternative to paper points in endodontic treatment. Acta Biomater 9: 6116-6122 <https://doi.org/10.1016/j.actbio.2012.12.022>
75. Zaborowska M, Bodin A, Backdahl H, Popp J, Goldstein A, Gatenholm P 2010: Microporous bacterial cellulose as a potential scaffold for bone regeneration. Acta Biomater 6: 2540-2547 <https://doi.org/10.1016/j.actbio.2010.01.004>
76. Zang S, Zhuo Q, Chang X, Qiu G, Wu Z, Yang G 2014: Study of osteogenic differentiation of human adipose-derived stem cells (HASCs) on bacterial cellulose. Carbohydr Polym 104: 158-165 <https://doi.org/10.1016/j.carbpol.2014.01.019>
77. Zharikov AN, Lubyansky VG, Gladysheva EK, Skiba EA, Budaeva VV, Semyonova EN, Zharikov AA, Sakovich GV 2018: Early morphological changes in tissues when replacing abdominal wall defects by bacterial nanocellulose in experimental trials. J Mater Sci: Mater Med 29: 95
78. Zhu C, Li F, Zhou X, Lin L, Zhang T 2014: Kombucha-synthesized bacterial cellulose: preparation, characterization, and biocompatibility evaluation. J Biomed Mater Res A 102: 1548-1557 <https://doi.org/10.1002/jbm.a.34796>
79. Zhu C, Liu F, Qian W, Wang Y, You Q, Zhang T, Li F 2015a: Esophageal replacement by hydroxylated bacterial cellulose patch in a rabbit model. Turk J Med Sci 45: 762-770 <https://doi.org/10.3906/sag-1407-140>
80. Zhu W, Li W, He Y, Duan T 2015b: In-situ biopreparation of biocompatible bacterial cellulose/graphene oxide composites pellets. Appl Surf Sci 338: 22-26 <https://doi.org/10.1016/j.apsusc.2015.02.030>
81. Zimmermann KA, LeBlanc JM, Sheets KT, Fox RW, Gatenholm P 2011: Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications. Mater Sci Eng C 31: 43-49 <https://doi.org/10.1016/j.msec.2009.10.007>
front cover
  • ISSN 0001-7213 (printed)
  • ISSN 1801-7576 (electronic)

Current issue

Indexed in DOAJ

Archive