Acta Vet. Brno 2020, 89: 69-78
https://doi.org/10.2754/avb202089010069
Trypanosomes in Eastern and Central European bats
References
1. R, Perrin N, Hausser J 1997: Trophic resource partitioning and competition between the two sibling bat species Myotis myotis and Myotis blythii. J Anim Ecol 66: 897-911
<https://doi.org/10.2307/6005>
2. JR, Green SM, Chaloner LA, Gaborak M 1972: Trypanosoma (Schizotrypanum) dionisii of Pipistrellus pipistrellus (Chiroptera): intra- and extracellular development in vitro. Parasitology 65: 251-263
<https://doi.org/10.1017/S0031182000045030>
3. O, Stearns SC, Schötzau A, Brun R 2009: Intraspecific competition between co‐infecting parasite strains enhances host survival in African trypanosomes. Ecology 90: 3367-3378
<https://doi.org/10.1890/08-2291.1>
4. O, Ševčík M, Jahelková H, Bartonička T, Orlova M, Vilímová J 2012: Transport of bugs of the genus Cimex (Heteroptera: Cimicidae) by bats in western Palaearctic. Vespertilio 16: 43-54
5. O, Bartonička T, Simov N, Paunovic M, Vilímová J 2014: Distribution and host relations of species of the genus Cimex on bats in Europe. Folia Zool 63: 281-289
<https://doi.org/10.25225/fozo.v63.i4.a7.2014>
6. H, Sedlackova J, Pohanka M, Novotny L, Hubalek M, Treml F, Vitula F, Pikula J 2009: Tularemia induces different biochemical responses in BALB/c mice and common voles. BMC Infect Dis 9: 101
<https://doi.org/10.1186/1471-2334-9-101>
7. H, Bartonička T, Berkova H, Brichta J, Kokurewicz T, Kovacová V, Linhart P, Piacek V, Pikula J, Zahradníková A, Zukal J 2018: Alterations in the health of hibernating bats under pathogen pressure. Sci Rep 8: 6067
<https://doi.org/10.1038/s41598-018-24461-5>
8. HR, Carey HV, Kroese FG 2010: Hibernation: the immune system at rest? J Leukoc Biol 88: 619-624
<https://doi.org/10.1189/jlb.0310174>
9. MS, Reis-Cunha JL, Bartholomeu DC 2016: Evasion of the immune response by Trypanosoma cruzi during acute infection. Front Immunol 6: 659
<https://doi.org/10.3389/fimmu.2015.00659>
10. AM, Mess A 2008: Evolution of the placenta and associated reproductive characters in bats. J Exp Zool B Mol Dev Evol 310: 428-449
<https://doi.org/10.1002/jez.b.21216>
11. AC 1914: Blood parasites found in mammals, birds, and fishes in England. Parasitology 7: 17-61
<https://doi.org/10.1017/S0031182000006284>
12. VM, Kalko EK, Cottontail I, Wellinghausen N, Tschapka M, Perkins SL, Pinto CM 2014: High local diversity of Trypanosoma in a common bat species, and implications for the biogeography and taxonomy of the T. cruzi clade. Plos One 9: e108603
<https://doi.org/10.1371/journal.pone.0108603>
13. PW 1995: The evolution of virulence: A unifying link between parasitology and ecology. J Parasitol 81: 659-669
<https://doi.org/10.2307/3283951>
14. RA, Molyneux DH 1988: Schizotrypanum in British bats. Parasitology 97: 43-50
<https://doi.org/10.1017/S0031182000066725>
15. R, Łupicki D 2008: Arthropods (Acari, Siphonaptera, Heteroptera, Psocoptera) associated with Nyctalus noctula (Schreber, 1774) (Chiroptera: Vespertilionidae) in Southern Poland. Wiad Parazytol 54: 123-130
16. TA 1999: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41: 95-98
17. PB, Cruickshank C, Stevens JR, Teixeira MM, Mathews F 2012: Parasites reveal movement of bats between the New and Old Worlds. Mol Phylogenet Evol 63: 521-526
<https://doi.org/10.1016/j.ympev.2012.01.007>
18. LG, Zera AJ 2007: The cost of reproduction: the devil in the details. Trends Ecol Evol 22: 80-86
<https://doi.org/10.1016/j.tree.2006.10.008>
19. EJ, Xiong X, Carlier Y, Sosa-Estani S, Buekens P 2014: Frequency of the congenital transmission of Trypanosoma cruzi: a systematic review and meta-analysis. BJOG 121: 22-23
<https://doi.org/10.1111/1471-0528.12396>
20. R, Palíková M, Papežíková I, Mareš J, Navrátil S, Pikula J, Pohanka M 2018: Oxidative stress response of rainbow trout (Oncorhynchus mykiss) to multiple stressors. Acta Vet Brno 87: 55-64
<https://doi.org/10.2754/avb201887010055>
21. CV, Pinho AP, Herrera HM, Gerhardt M, Cupolillo E, Jansen AM 2008: Trypanosoma cruzi (Kinetoplastida, Trypanosomatidae) genotypes in neotropical bats in Brazil. Vet Parasitol 156: 314-318
<https://doi.org/10.1016/j.vetpar.2008.06.004>
22. Lord JS 2010: Micro and macroparasites of bats (Chiroptera). Ph.D. thesis, University of Salford
23. Lord JS, Brooks DR 2014: Bat Endoparasites: A UK Perspective. In: Klimpel S, Melhorn H (Ed.): Bats (Chiroptera) as Vectors of Diseases and Parasites. Springer, pp. 63-86
24. IMD, De Pablos LM, Longhi SA, Zago MP, Schijman AG, Osuna A 2017: Immune complexes in chronic Chagas disease patients are formed by exovesicles from Trypanosoma cruzi carrying the conserved MASP N-terminal region. Sci Rep 7: 44451
<https://doi.org/10.1038/srep44451>
25. RK, Bandouchova H, Bartonicka T, Pikula J, Zahradnikova A Jr, Zukal J, Martinkova N 2016: Ectoparasites may serve as vectors for the white-nose syndrome fungus. Parasit Vectors 9: 16
<https://doi.org/10.1186/s13071-016-1302-2>
26. Molyneux DH 1991: Trypanosomes of Bats. In: Kreier JP, Baker JR (Eds): Parasitic Protozoa. Academic Press, New York, pp. 195-223
27. J, Coll O, Juncosa T, Vergés M, del Pino M, Fumado V, Bosch J, Posada EJ, Hernandez S, Fisa R, Boguña JM, Gállego M, Sanz S, Portús M, Gascón J 2009: Prevalence and vertical transmission of Trypanosoma cruzi infection among pregnant Latin American women attending 2 maternity clinics in Barcelona, Spain. Clin Infect Dis 48: 1736-1740
<https://doi.org/10.1086/599223>
28. GF 1905: Observations relating to the structure and geographical distribution of certain trypanosomes. J Hyg 5: 191-200
<https://doi.org/10.1017/S002217240000245X>
29. J, Bandouchova H, Kovacova V, Linhart P, Piacek V, Zukal J 2017: Reproduction of rescued vespertilionid bats (Nyctalus noctula) in captivity: Veterinary and physiological aspects. Vet Clin North Am Exot Anim Pract 20: 665-677
<https://doi.org/10.1016/j.cvex.2016.11.013>
30. A 2016: An Overview of Trypanosoma brucei infections: an intense hostÐparasite interaction. Front Microbiol 7: 2126
<https://doi.org/10.3389/fmicb.2016.02126>
31. T, Gas A 2009: Do the thermal conditions in maternity colony roost determine the size of young bats? Comparison of attic and cave colonies of Myotis myotis in Southern Poland. Folia Zool 58: 396-408
32. Rambaut A 2010: FigTree v1.3.1. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh. http://tree.bio.ed.ac.uk/software/figtree/
33. JD, Tapia-Calle G, Muñoz-Cruz G, Poveda C, Rendón LM, Hincapié E, Guhl F 2014: Trypanosome species in neo-tropical bats: biological, evolutionary and epidemiological implications. Infect Genet Evol 22: 250-256
<https://doi.org/10.1016/j.meegid.2013.06.022>
34. F, Teslenko M, van der Mark P, Ayres D, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP 2012: MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61: 539-542
<https://doi.org/10.1093/sysbio/sys029>
35. EA, Votýpka J, Kment P, Lukeš J, Kelly S 2017: Description of Phytomonas oxycareni n. sp. from the salivary glands of Oxycarenus lavaterae. Protist 168: 71-79
<https://doi.org/10.1016/j.protis.2016.11.002>

