Acta Vet. Brno 2020, 89: 11-17

https://doi.org/10.2754/avb202089010011

Intrafollicular oocyte transfer in cattle – a technical report

Michaela Andrlíková1, Vladislav Bína2, Vojtech Kos1, Miloslava Lopatářová1, Beata Markova1, Lucie Stenclova1, Svatopluk Čech1

1University of Veterinary and Pharmaceutical Sciences Brno, Faculty of Veterinary Medicine, Ruminant and Swine Clinic, Brno, Czech Republic
2University of Economics Prague, Faculty of Management, Department of Exact Methods, Prague, Czech Republic

Received November 13, 2019
Accepted January 28, 2020

References

1. Besenfelder U, Havlicek V, Kuzmany A, Brem G 2010: Endoscopic approaches to manage in vitro and in vivo embryo development: Use of the bovine oviduct. Theriogenology 73: 768-776 <https://doi.org/10.1016/j.theriogenology.2009.07.003>
2. Findlay JK, Holland MK, Wong BBM 2019: Reproductive science and the future of the planet. Reproduction 158: R91-R96 <https://doi.org/10.1530/REP-18-0640>
3. Hoelker M, Kassens A, Salilew-Wondim D, Sieme H, Wrenzycki C, Tesfaye D, Neuhoff Ch, Schellander K, Held-Hoelker E 2017: Birth of healthy calves after intra-follicular transfer (IFOT) of slaughterhouse derived immature bovine oocytes. Theriogenology 97: 41-44 <https://doi.org/10.1016/j.theriogenology.2017.04.009>
4. Kasinathan P, Wei H, Xiang T, Molina JA, Metzger J, Broek D, Kasinathan S, Faber DC, Allan MF 2015: Acceleration of genetic gain in cattle by reduction of generation interval. Sci Rep 5: 5-8 <https://doi.org/10.1038/srep08674>
5. Kassens A, Held E, Salilew-Wondim D, Sieme H, Wrenzycki C, Tesfaye D, Schellander K, Hoelker M 2015: Intrafollicular oocyte transfer (IFOT) of abattoir-derived and in vitro-matured oocytes results in viable blastocysts and birth of healthy calves. Biol Reprod 92: 1-2 <https://doi.org/10.1095/biolreprod.114.124883>
6. Landry DA, Bellefleur AM, Labrecque R, Grand FX, Vigneault C, Blondin P, Sirard MA 2016: Effect of cow age on the in vitro developmental competence of oocytes obtained after FSH stimulation and coasting treatments. Theriogenology 86: 1240-1246 <https://doi.org/10.1016/j.theriogenology.2016.04.064>
7. Lonergan P, Fair T 2008: In vitro-produced bovine embryos-Dealing with the warts. Theriogenology 69: 17-22 <https://doi.org/10.1016/j.theriogenology.2007.09.007>
8. Moreno D, Neira A, Dubreil L, Liegeois L, Destrumelle S, Michaud S, Thorin C, Briand-Amirat L, Benchasroff D, Tainturier D 2015: In vitro bovine embryo production in a synthetic medium: Embryo development, cryosurvival, and establishment of pregnancy. Theriogenology 84: 1053-1060 <https://doi.org/10.1016/j.theriogenology.2015.04.014>
9. O’Doherty AM, McGettigan P, Irwin RE, Magee DA, Gagne D, Fournier E, Al-Naib A, Sirard M-A, Walsh CP, Robert C, Fair T 2018: Intragenic sequences in the trophectoderm harbour the greatest proportion of methylation errors in day 17 bovine conceptuses generated using assisted reproductive technologies. BMC Genomics, 19: 1-15 <https://doi.org/10.1186/s12864-018-4818-3>
10. Pieterse M, Kappen K, Kruip T, Taverne M 1988: Aspiration of bovine oocytes during transvaginal ultrasound scanning of the ovaries. Theriogenology 30: 751-762 <https://doi.org/10.1016/0093-691X(88)90310-X>
11. R Core Team 2017: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
12. Sprícigo JFW, Sena Netto SB, Muterlle CV, Rodrigues S de AD, Leme LO, Guimarães AL, Costa Caixeta FM, Machain Franco M, Pivato I, Dode MAN 2016: Intrafollicular transfer of fresh and vitrified immature bovine oocytes. Theriogenology 86: 2054-2062 <https://doi.org/10.1016/j.theriogenology.2016.07.003>
13. Velazquez MA, Kues WA, Niemann H 2014: Biomedical applications of ovarian transvaginal ultrasonography in cattle. Anim Biotechnol 25: 266-293 <https://doi.org/10.1080/10495398.2013.870075>
front cover
  • ISSN 0001-7213 (printed)
  • ISSN 1801-7576 (electronic)

Current issue

Archive