Acta Vet. Brno 2020, 89: 69-78
https://doi.org/10.2754/avb202089010069
Trypanosomes in Eastern and Central European bats
References
1. 1997: Trophic resource partitioning and competition between the two sibling bat species Myotis myotis and Myotis blythii. J Anim Ecol 66: 897-911
< R, Perrin N, Hausser J https://doi.org/10.2307/6005>
2. 1972: Trypanosoma (Schizotrypanum) dionisii of Pipistrellus pipistrellus (Chiroptera): intra- and extracellular development in vitro. Parasitology 65: 251-263
< JR, Green SM, Chaloner LA, Gaborak M https://doi.org/10.1017/S0031182000045030>
3. 2009: Intraspecific competition between co‐infecting parasite strains enhances host survival in African trypanosomes. Ecology 90: 3367-3378
< O, Stearns SC, Schötzau A, Brun R https://doi.org/10.1890/08-2291.1>
4. 2012: Transport of bugs of the genus Cimex (Heteroptera: Cimicidae) by bats in western Palaearctic. Vespertilio 16: 43-54
O, Ševčík M, Jahelková H, Bartonička T, Orlova M, Vilímová J
5. 2014: Distribution and host relations of species of the genus Cimex on bats in Europe. Folia Zool 63: 281-289
< O, Bartonička T, Simov N, Paunovic M, Vilímová J https://doi.org/10.25225/fozo.v63.i4.a7.2014>
6. 2009: Tularemia induces different biochemical responses in BALB/c mice and common voles. BMC Infect Dis 9: 101
< H, Sedlackova J, Pohanka M, Novotny L, Hubalek M, Treml F, Vitula F, Pikula J https://doi.org/10.1186/1471-2334-9-101>
7. 2018: Alterations in the health of hibernating bats under pathogen pressure. Sci Rep 8: 6067
< H, Bartonička T, Berkova H, Brichta J, Kokurewicz T, Kovacová V, Linhart P, Piacek V, Pikula J, Zahradníková A, Zukal J https://doi.org/10.1038/s41598-018-24461-5>
8. 2010: Hibernation: the immune system at rest? J Leukoc Biol 88: 619-624
< HR, Carey HV, Kroese FG https://doi.org/10.1189/jlb.0310174>
9. 2016: Evasion of the immune response by Trypanosoma cruzi during acute infection. Front Immunol 6: 659
< MS, Reis-Cunha JL, Bartholomeu DC https://doi.org/10.3389/fimmu.2015.00659>
10. 2008: Evolution of the placenta and associated reproductive characters in bats. J Exp Zool B Mol Dev Evol 310: 428-449
< AM, Mess A https://doi.org/10.1002/jez.b.21216>
11. 1914: Blood parasites found in mammals, birds, and fishes in England. Parasitology 7: 17-61
< AC https://doi.org/10.1017/S0031182000006284>
12. 2014: High local diversity of Trypanosoma in a common bat species, and implications for the biogeography and taxonomy of the T. cruzi clade. Plos One 9: e108603
< VM, Kalko EK, Cottontail I, Wellinghausen N, Tschapka M, Perkins SL, Pinto CM https://doi.org/10.1371/journal.pone.0108603>
13. 1995: The evolution of virulence: A unifying link between parasitology and ecology. J Parasitol 81: 659-669
< PW https://doi.org/10.2307/3283951>
14. 1988: Schizotrypanum in British bats. Parasitology 97: 43-50
< RA, Molyneux DH https://doi.org/10.1017/S0031182000066725>
15. 2008: Arthropods (Acari, Siphonaptera, Heteroptera, Psocoptera) associated with Nyctalus noctula (Schreber, 1774) (Chiroptera: Vespertilionidae) in Southern Poland. Wiad Parazytol 54: 123-130
R, Łupicki D
16. 1999: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41: 95-98
TA
17. 2012: Parasites reveal movement of bats between the New and Old Worlds. Mol Phylogenet Evol 63: 521-526
< PB, Cruickshank C, Stevens JR, Teixeira MM, Mathews F https://doi.org/10.1016/j.ympev.2012.01.007>
18. 2007: The cost of reproduction: the devil in the details. Trends Ecol Evol 22: 80-86
< LG, Zera AJ https://doi.org/10.1016/j.tree.2006.10.008>
19. 2014: Frequency of the congenital transmission of Trypanosoma cruzi: a systematic review and meta-analysis. BJOG 121: 22-23
< EJ, Xiong X, Carlier Y, Sosa-Estani S, Buekens P https://doi.org/10.1111/1471-0528.12396>
20. 2018: Oxidative stress response of rainbow trout (Oncorhynchus mykiss) to multiple stressors. Acta Vet Brno 87: 55-64
< R, Palíková M, Papežíková I, Mareš J, Navrátil S, Pikula J, Pohanka M https://doi.org/10.2754/avb201887010055>
21. 2008: Trypanosoma cruzi (Kinetoplastida, Trypanosomatidae) genotypes in neotropical bats in Brazil. Vet Parasitol 156: 314-318
< CV, Pinho AP, Herrera HM, Gerhardt M, Cupolillo E, Jansen AM https://doi.org/10.1016/j.vetpar.2008.06.004>
22. Lord JS 2010: Micro and macroparasites of bats (Chiroptera). Ph.D. thesis, University of Salford
23. Lord JS, Brooks DR 2014: Bat Endoparasites: A UK Perspective. In: Klimpel S, Melhorn H (Ed.): Bats (Chiroptera) as Vectors of Diseases and Parasites. Springer, pp. 63-86
24. 2017: Immune complexes in chronic Chagas disease patients are formed by exovesicles from Trypanosoma cruzi carrying the conserved MASP N-terminal region. Sci Rep 7: 44451
< IMD, De Pablos LM, Longhi SA, Zago MP, Schijman AG, Osuna A https://doi.org/10.1038/srep44451>
25. 2016: Ectoparasites may serve as vectors for the white-nose syndrome fungus. Parasit Vectors 9: 16
< RK, Bandouchova H, Bartonicka T, Pikula J, Zahradnikova A Jr, Zukal J, Martinkova N https://doi.org/10.1186/s13071-016-1302-2>
26. Molyneux DH 1991: Trypanosomes of Bats. In: Kreier JP, Baker JR (Eds): Parasitic Protozoa. Academic Press, New York, pp. 195-223
27. 2009: Prevalence and vertical transmission of Trypanosoma cruzi infection among pregnant Latin American women attending 2 maternity clinics in Barcelona, Spain. Clin Infect Dis 48: 1736-1740
< J, Coll O, Juncosa T, Vergés M, del Pino M, Fumado V, Bosch J, Posada EJ, Hernandez S, Fisa R, Boguña JM, Gállego M, Sanz S, Portús M, Gascón J https://doi.org/10.1086/599223>
28. 1905: Observations relating to the structure and geographical distribution of certain trypanosomes. J Hyg 5: 191-200
< GF https://doi.org/10.1017/S002217240000245X>
29. 2017: Reproduction of rescued vespertilionid bats (Nyctalus noctula) in captivity: Veterinary and physiological aspects. Vet Clin North Am Exot Anim Pract 20: 665-677
< J, Bandouchova H, Kovacova V, Linhart P, Piacek V, Zukal J https://doi.org/10.1016/j.cvex.2016.11.013>
30. 2016: An Overview of Trypanosoma brucei infections: an intense hostÐparasite interaction. Front Microbiol 7: 2126
< A https://doi.org/10.3389/fmicb.2016.02126>
31. 2009: Do the thermal conditions in maternity colony roost determine the size of young bats? Comparison of attic and cave colonies of Myotis myotis in Southern Poland. Folia Zool 58: 396-408
T, Gas A
32. Rambaut A 2010: FigTree v1.3.1. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh. http://tree.bio.ed.ac.uk/software/figtree/
33. 2014: Trypanosome species in neo-tropical bats: biological, evolutionary and epidemiological implications. Infect Genet Evol 22: 250-256
< JD, Tapia-Calle G, Muñoz-Cruz G, Poveda C, Rendón LM, Hincapié E, Guhl F https://doi.org/10.1016/j.meegid.2013.06.022>
34. 2012: MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61: 539-542
< F, Teslenko M, van der Mark P, Ayres D, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP https://doi.org/10.1093/sysbio/sys029>
35. 2017: Description of Phytomonas oxycareni n. sp. from the salivary glands of Oxycarenus lavaterae. Protist 168: 71-79
< EA, Votýpka J, Kment P, Lukeš J, Kelly S https://doi.org/10.1016/j.protis.2016.11.002>