Acta Vet. Brno 2020, 89: 317-332

https://doi.org/10.2754/avb202089040317

Molecular genetic techniques and oligonucleotides for mycoplasma identification – a review

Markhabat Kairova, Damegul Rakhimzhanova

Kazakh AgroTechnical University named after S. Seifullin (KATU), Nur-Sultan, Republic of Kazakhstan

Received May 15, 2020
Accepted December 21, 2020

References

1. Adilbekova AK, Usenbekov ES, Turebekov OT, Koibagarov KU, Mahmutov AK 2015: Physiotherapeutic methods for treating mastitis in cows (in Russian). Intellect Idea Innovation 1: 19-24
2. Baird SC, Carman J, Dinsmore RP, Walker RL, Collins JK 1999: Detection and identification of Mycoplasma from bovine mastitis infections using a nested polymerase chain reaction. J Vet Diagn Invest 11: 432-435 <https://doi.org/10.1177/104063879901100507>
3. Boonyayatra S, Fox LK, Besser TE, Sawant A, Gay JM, Raviv Z 2012: A PCR assay and PCR-restriction fragment length polymorphism combination identifying the 3 primary Mycoplasma species causing mastitis. J Dairy Sci 95: 196-205 <https://doi.org/10.3168/jds.2011-4531>
4. Cai HY, Bell-Rogers P, Parker L, Prescott JF 2005: Development of a real-time PCR for detection of Mycoplasma bovis in bovine milk and lung samples. J Vet Diagn Invest 17: 537-545 <https://doi.org/10.1177/104063870501700603>
5. Clothier KA, Jordan DM, Thompson CJ, Kinyon JM, Frank TS, Strait EL 2010: Mycoplasma bovis real-time polymerase chain reaction assay validation and diagnostic performance. J Vet Diagn Invest 22: 956-60 <https://doi.org/10.1177/104063871002200618>
6. Dobrovolny PL, Bess D 2011: Optimized PCR-based Detection of Mycoplasma. Jo VE 52: e3057
7. Feldea O, Kreizinger Z, Sulyoka KM, Martona S, Bányaia Kr, Korbulya K, Kissb K, Biksic I, Gyuranecz M 2018: Genotyping Mycoplasma hyopneumoniae isolates based on multi-locus sequence typing, multiple-locus variable-number tandem repeat analysis and analysing gene. Vet Microbiol 222: 85-90 <https://doi.org/10.1016/j.vetmic.2018.07.004>
8. Friis NF 1975: Some recommendations concerning primary isolation of Mycoplasma suipneumoniae and Mycoplasma flocculare. Nord Veterinarmed 27: 337-339
9. Ghanem M, El-Gazzar M 2018: Development of Mycoplasma synoviae (MS) core genome multilocus sequence typing (cgMLST) scheme. Vet Microbiol 218: 84-89 <https://doi.org/10.1016/j.vetmic.2018.03.021>
10. Gondaira S, Higuchia H, Nishia K, Iwano H, Nagahata H 2017: Mycoplasma bovis escapes bovine neutrophil extracellular traps. Vet Microbiol 199: 68-73 <https://doi.org/10.1016/j.vetmic.2016.12.022>
11. Harasawa R, Mizusawa H, Nozawa K, Nakagawa T, Asada K, Kato I 1993: Detection and tentative identification of dominant mycoplasma species in cell cultures by restriction analysis of the 16S–23S rRNA intergenic spacer regions. Res Microbiol 144: 489-493 <https://doi.org/10.1016/0923-2508(93)90057-9>
12. Harasawa R 1996: Nested PCR: Application to the detection of mycoplasmas. In: Razin S, Tully JG (Eds): Molecular and diagnostic procedures in Mycoplasmology Vol. 2. Academic press, New York, pp. 75-79
13. Harasawa R 1999: Genetic relationships among mycoplasmas based on the 16S-23S rRNA spacer sequence. Microbiol and Immunol 43: 127-132 <https://doi.org/10.1111/j.1348-0421.1999.tb02383.x>
14. Harasawa R, Kanamoto Y 1999: Differentiation of two biovars of Ureaplasma urealyticum based on the 16S-23S rRNA Intergenic spacer region. J. Clinic Microbiol 37: 4135-4138 <https://doi.org/10.1128/JCM.37.12.4135-4138.1999>
15. Harasawa R, Hotzel H, Sachse K 2000: Comparison of 16S-23S rRNA intergenic spacer regions among strains of the Mycoplasma mycoides cluster, and reassessment of the taxonomic position of Mycoplasma sp. bovine group 7. Intern J Syst and Evol Microbiol 50: 1325-1329 <https://doi.org/10.1099/00207713-50-3-1325>
16. Harasawa R, Kawahara M, Rikihisa Y 2002: Characteristics of the 16S-23S rRNA Intergenic Spacer Region of Mycoplasma haemomuris, previously classified as ‘Haemobartonella muris’. J Vet Med Sci 64: 1161-1164 <https://doi.org/10.1292/jvms.64.1161>
17. Harasawa R, Pitcher DG, Ramirez AS, Bradbury JM 2004: A putative transposase gene in the 16S-23S rRNA intergenic spacer region of Mycoplasma imitans. Microbiology 150: 1023-1029 <https://doi.org/10.1099/mic.0.26629-0>
18. Harasawa R, Mizusawa H, Fujii M, Yamamoto J, Mukai H, Uemori T, Asada K, Kato I 2005: Rapid detection and differentiation of the major mycoplasma contaminants in cell cultures using real-time PCR with SYBR green I and melting curve analysis. Microbiol Immunol 49: 859-863 <https://doi.org/10.1111/j.1348-0421.2005.tb03675.x>
19. Higuchi H, Iwano H, Kawai K, Ohta T, Obayashi T, Hirose K, Ito N, Yokota H, Tamura Y, Nagahata H 2011: A simplified PCR assay for fast and easy mycoplasma mastitis screening in dairy cattle. J Vet Sci 12: 191-193 <https://doi.org/10.4142/jvs.2011.12.2.191>
20. Hirose K, Kawasaki Y, Kotani K, Tanaka A, Abiko K, Ogawa H 2001: Detection of Mycoplasma in mastitic milk by PCR analysis and culture method. J Vet Med Sci 63: 691-693 <https://doi.org/10.1292/jvms.63.691>
21. Hotzel H, Demuth B, Sachse K, Pflitsch A, Pfutzner H 1993: Detection of Mycoplasma bovis using in vitro deoxyribonucleic acid amplification. Rev Sci Tech 12: 581-591 <https://doi.org/10.20506/rst.12.2.700>
22. Justice-Allen A, Trujillo J, Goodell G, Wilson D 2011: Detection of multiple Mycoplasma species in bulk tank milk samples using real-time PCR and conventional culture and comparison of test sensitivities. J Dairy Sci 94: 3411-3419 <https://doi.org/10.3168/jds.2010-3940>
23. Kong F, James G, Gordon S, Zelynski A, Gilbert GL 2001: Species-specific PCR for identification of common contaminant mollicutes in cell culture. Appl Env Microbiol 67: 3195-3200 <https://doi.org/10.1128/AEM.67.7.3195-3200.2001>
24. Kreizinger Z, Sulyok KM, Bekő K, Kovács ÁB, Grózner D, Felde O, Marton S, Bányai K, Catania S, Benčina D, Gyuranecz M 2018: Genotyping Mycoplasma synoviae: Development of a multi-locus variable number of tandem-repeats analysis and comparison with current molecular typing methods. Vet Microbiol 226: 41-49 <https://doi.org/10.1016/j.vetmic.2018.10.012>
25. Masedo AAM, Oliveira JMB, Silva BP, Borges JM, Soares LBF, Silva GM, Santos SB, Mota RA, Pinheiro-Junior JW 2018: Occurrence of Mycoplasma bovigenitalium and Ureaplasma diversum in dairy cattle from to Pernambuco state, Brazil. Arq Bras Med Vet Zootec 70: 1798-1806.
26. Marusich AG 2017: Cattle breeding. Herd reproduction: educational and methodical manual. UO “BSAA”, Horki, 64 р.
27. Nakagawa T, Uemori T, Asada K, Kato I, Harasawa R 1992: Acholeplasma laidlawii has tRNA genes in the 16S–23S spacer of the rRNA operon. J Bacteriol 174: 8163-8165 <https://doi.org/10.1128/JB.174.24.8163-8165.1992>
28. Parker AM, House JK, Hazelton MS, Bosward KL, Sheehy PA 2017: Comparison of culture and a multiplex probe PCR for identifying Mycoplasma species in bovine milk, semen and swab samples. PLoS One 12: e0173422 <https://doi.org/10.1371/journal.pone.0173422>
29. Rossetti BC, Frey J, Pilo P 2010: Direct detection of Mycoplasma bovis in milk and tissue samples by real-time PCR. Mol Cell Probes 24: 321-323 <https://doi.org/10.1016/j.mcp.2010.05.001>
30. Sachse K, Pfützner H, Hotzel H, Demuth B, Heller M, Berthold E 1993: Comparison of various diagnostic methods for the detection of Mycoplasma bovis. Rev Sci Tech 12: 571-580 <https://doi.org/10.20506/rst.12.2.701>
31. Stakenborg T, Vicca J, Butaye P, Maes D, De Baere T, Verhelts R, Peeters J, De Kruif A, Haesebrouck F, Vaneechoutte M 2005: Evaluation of amplified rDNA restriction analysis (ARDRA) for the identification of Mycoplasma species. BMC Infectious diseases 5: 46 <https://doi.org/10.1186/1471-2334-5-46>
32. Sulyok KM, Bekő K, Kreizinger Z, Wehmann E, Jerzsele Á, Rónai Z, Turcsányi I, Makrai L, Szeredi L, Jánosi S, Nagy SA, Gyuranecz M 2018: Development of molecular methods for the rapid detection of antibiotic susceptibility of Mycoplasma bovis. Vet Microbiol 213: 47-57 <https://doi.org/10.1016/j.vetmic.2017.11.026>
33. Sung H, Kang SH, Bae YJ, Hong JT, Chung YB, Lee Ch-K, Song S 2006: PCR based detection of Mycoplasma species. J Microbiol 44: 42-49
34. Tang J, Hu M, Lee S, Roblin R 2000: A polymerase chain reaction based method for detecting Mycoplasma/Acholeplasma contaminants in cell culture. J Microbiol Methods 39: 121-126 <https://doi.org/10.1016/S0167-7012(99)00107-4>
35. Tramuta C, Lacerenza D, Zoppi S, Goria M, Dondo A, Ferreglio E, Nebbia P, Rosati S 2011: Development of a set of multiplex standard polymerase chain reaction assays for the identification of infectious agents from aborted bovine clinical samples. J Vet Diagn Invest 23: 657-664 <https://doi.org/10.1177/1040638711407880>
36. Uemori T, Asada K, Kito I, Harasawa R 1992: Amplification of the 16S–23S spacer region in rRNA operons of mycoplasmas by the polymerase chain reaction. Syst Appl Microbiol 15: 181-186 <https://doi.org/10.1016/S0723-2020(11)80089-5>
37. Van Kuppeveld FJM, Van Der Logt JTM, Angulo AF, Van Zoest MJ, Quint WGV, Niesters HGM, Galama JMD, Melchers WJG 1992: Genus- and species-specific identification of Mycoplasmas by 16S rRNA amplification. Appl and Environ Microbiol 58: 2606-2615 <https://doi.org/10.1128/AEM.58.8.2606-2615.1992>
38. Zhumanov KT, Biyshev KB, Biyshev BK, Sansyzbai AR, Valdovska A, Oryntaev KB 2015: Comparison of some methods of diagnostics of mycosis mastitis in cows. Intellect Idea Innovation 3: 40-44 (in Russian)
front cover
  • ISSN 0001-7213 (printed)
  • ISSN 1801-7576 (electronic)

Current issue

Indexed in DOAJ

Archive