Acta Vet. Brno 2021, 90: 3-13
https://doi.org/10.2754/avb202190010003
The impact of the oxidative status on the reproduction of cows and the calves’ health – a review
References
1. MR, Okada K, Uchiza M, Morita E, Sato R, Yasuda J 2016: Evaluation of oxidative DNA damage in blood lymphocytes during the transition period in dairy cows. J Appl Anim Res 44: 323-325
<https://doi.org/10.1080/09712119.2015.1031788>
2. A, Hernández J, Benedito JL, Castillo C, Hernandez J, Benedito JL, Castillo C, Hernández J, Benedito JL, Castillo C 2015: The importance of the oxidative status of dairy cattle in the periparturient period: Revisiting antioxidant supplementation. J Anim Physiol Anim Nutr 99: 1003-1016
<https://doi.org/10.1111/jpn.12273>
3. A, Gandy JC, Neuder L, Brester J, Sordillo LM 2016: Short communication: Markers of oxidant status and inflammation relative to the development of claw lesions associated with lameness in early lactation cows. J Dairy Sci 99: 5640-5648
<https://doi.org/10.3168/jds.2015-10707>
4. A, Hernández J, Benedito J, Castillo C 2019: Redox biology in transition periods of dairy cattle: role in the health of periparturient and neonatal animals. Antioxidants 8: 20
<https://doi.org/10.3390/antiox8010020>
5. KH, Fowler PA, Garrel C 2010: The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. Int J Biochem Cell B 42: 1634-1650
<https://doi.org/10.1016/j.biocel.2010.06.001>
6. KM 2009: Oxidative stress in calves with acute or chronic bronchopneumonia. Rev Med Vet-toulouse 160: 231-236
7. E, Kankofer M 2010: The comparison of antioxidative/oxidative profile in colostrum, milk and blood of early post-partum cows during their first and second lactation. Reprod Domest Anim 45: 417-425
<https://doi.org/10.1111/j.1439-0531.2010.01592.x>
8. E, Kankofer M 2011: The comparison of antioxidative/oxidative profile in blood, colostrum and milk of early post-partum cows and their newborns. Reprod Domest Anim 46: 763-769
<https://doi.org/10.1111/j.1439-0531.2010.01737.x>
9. R 2003: Conception Rates after AI in Swedish Red and White Dairy Heifers: Relationship with Progesterone Concentrations at AI. Reprod Domest Anim 38: 199-203
<https://doi.org/10.1046/j.1439-0531.2003.00426.x>
10. AC, Haskell MJ, Birch S, Bagnall A, Bell DJ, Dickinson J, Macrae AI, Dwyer CM 2013: The impact of dystocia on dairy calf health, welfare, performance and survival. Vet J 195: 86-90
<https://doi.org/10.1016/j.tvjl.2012.07.031>
11. U, Lacetera N, Baumgard LH, Rhoads RP, Ronchi B, Nardone A 2010: Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal 4: 1167-1183
<https://doi.org/10.1017/S175173111000090X>
12. TE, Szenci O, Gay CC 1990: Decreased colostral immunoglobulin absorption in calves with postnatal respiratory acidosis. J Am Vet Med Assoc 196: 1239-43
13. C, Dona A, D’occhio MJ, McMeniman J, González LA 2020: Diagnosis of Bovine Respiratory Disease in feedlot cattle using blood 1H NMR metabolomics. Scientific Reports 10: 1-12
<https://doi.org/10.1038/s41598-019-56809-w>
14. JW, Hadorn U, Sallmann H-P, Schuep W 1997: Delaying colostrum intake by one day impairs plasma lipid, essential fatty acid, carotene, retinol and α-tocopherol status in neonatal calves. The Journal of Nutrition 127: 2024-2029
<https://doi.org/10.1093/jn/127.10.2024>
15. J, Jagos P 1984: Biochemical and hematological reference values in calves and their significance for health control. Acta Vet Brno 53: 137-142
<https://doi.org/10.2754/avb198453030137>
16. RJ, Nielen M, Newbold JR, Jansen EHJM, Jelinek HF, van Werven T 2010: Vitamin E supplementation during the dry period in dairy cattle. Part II: oxidative stress following vitamin E supplementation may increase clinical mastitis incidence postpartum. J Dairy Sci 93: 5696-5706
<https://doi.org/10.3168/jds.2010-3161>
17. A, Belloc C, Leblanc-Maridor M, Merlot E 2017: Effects of age and weaning conditions on blood indicators of oxidative status in pigs. Plos One 12 (e0178487): 1-14
<https://doi.org/10.1371/journal.pone.0178487>
18. Cadenas E, Packer L 2002 Handbook of Antioxidants. Marcel Dekker, Inc., 602 p.
19. M, Cantiello M, Giantin M, Nebbia C, Cannizzo FT, Bollo E, Dacasto M 2007: Serum antioxidant enzyme activities and oxidative stress parameters as possible biomarkers of exposure in veal calves illegally treated with dexamethasone. Toxicol In Vitro 21: 277-283
<https://doi.org/10.1016/j.tiv.2006.09.001>
20. P 2011: Biomarkers of oxidative stress in ruminant medicine. Immunopharm Immunot 33: 233-240
<https://doi.org/10.3109/08923973.2010.514917>
21. P, Gabai G 2015: Oxidant/antioxidant balance in animal nutrition and health: the role of protein oxidation. Front Vet Sci 2: 1-13
<https://doi.org/10.3389/fvets.2015.00048>
22. P, Merlo M, Barbato O, Gabai G 2012: Relationship between oxidative stress and the success of artificial insemination in dairy cows in a pasture-based system. Vet J 193: 498-502
<https://doi.org/10.1016/j.tvjl.2012.02.002>
23. P, Sullivan M, Evans D 2010: The stability of the reactive oxygen metabolites (d-ROMs) and biological antioxidant potential (BAP) tests on stored horse blood. Vet J 183: 217-218
<https://doi.org/10.1016/j.tvjl.2008.09.018>
24. SS, Celi P, Leury BJ, Clarke IJ, Dunshea FR 2014: Dietary antioxidants at supranutritional doses improve oxidative status and reduce the negative effects of heat stress in sheep. J Anim Sci 92: 3364-3374
<https://doi.org/10.2527/jas.2014-7714>
25. RC, Santos JEPP, Reynolds JP, Cerri RLAA, Juchem SO, Overton M 2004: Factors affecting conception rate after artificial insemination and pregnancy loss in lactating dairy cows. Anim Reprod Sci 84: 239-255
<https://doi.org/10.1016/j.anireprosci.2003.12.012>
26. J, Lindmark-Månsson H, Gorton L, Åkesson B 2003: Antioxidant capacity of bovine milk as assayed by spectrophotometric and amperometric methods. Int Dairy J 13: 927-935
<https://doi.org/10.1016/S0958-6946(03)00139-0>
27. MR, Skibsted LH, Stagsted J 2009: Characterization of major radical scavenger species in bovine milk through size exclusion chromatography and functional assays. J Agr Food Chem 57: 2912-2919
<https://doi.org/10.1021/jf803449t>
28. KA, Bush LJ, White TW 1992: Ascorbate in cattle: a review. Prof Anim Sci 8: 22-29
<https://doi.org/10.15232/S1080-7446(15)32101-X>
29. De Bie J 2017: The follicular micro-environment of the oocyte in metabolically compromised dairy cows : impact assessment as a basis for oocyte rescue. A thesis at Faculty of Pharmaceutical, Biomedical and Veterinary Sciences Department of Veterinary Sciences, Antwerp, 238 p.
30. MG, Parr MH, Morris DG 2012: Embryo death in cattle: An update. Reprod Fert Develop 24: 244-251
<https://doi.org/10.1071/RD11914>
31. J Van, Ribble CS, Boyer LG, Townsend HG 1993: Epidemiological study of enzootic pneumonia in dairy calves in Saskatchewan. Can J Vet Res 57: 247-254
32. GA, Dohoo IR, Montgomery DM, Bennett FL 1998: Calf and disease factors affecting growth in female Holstein calves in Florida, USA. Prev Vet Med 33: 1-10
<https://doi.org/10.1016/S0167-5877(97)00059-7>
33. MF, Sordillo LM, Siegford JM, Karcher EL 2015: Short communication: Characterizing metabolic and oxidant status of pastured dairy cows postpartum in an automatic milking system. J Dairy Sci 98: 7083-7089
<https://doi.org/10.3168/jds.2014-8941>
34. JK, Martin SM, Langdon M, Herzberg GR, Buettner GR 2002: Milk from mothers of both premature and full-term infants provides better antioxidant protection than does infant formula. Pediatr Res 51: 612-618
<https://doi.org/10.1203/00006450-200205000-00012>
35. HIM, Ghada OFA, Mohamed AE, Thabet MH 2018: Prevalence of Cryptosporidium parvum with oxidative stress and antioxidant status in sucker cattle calves suffering from diarrhea. J Agric Res 4: 20-31
36. T, Ribiczeyné-Szabó P, Stadler K, Jakus J, Reiczigel J, Kövér P, Mézes M, Sümeghy L 2006: Free radicals, lipid peroxidation and the antioxidant system in the blood of cows and newborn calves around calving. Comp Biochem Physiol 143: 391-396
<https://doi.org/10.1016/j.cbpb.2005.12.014>
37. G, Luca E De, Miotto G, Zin G, Stefani A, Dalt L Da, Barberio A, Celi P 2019: Relationship between protein oxidation biomarkers and uterine health in dairy cows during the postpartum period. Antioxidants 8: 21
<https://doi.org/10.3390/antiox8010021>
38. LM, Chow CK 2003: Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189: 147-163
<https://doi.org/10.1016/S0300-483X(03)00159-8>
39. JP, Horst RL 1997: Physiological changes at parturition and their relationship to metabolic disorders. J Dairy Sci 80: 1260-1268
<https://doi.org/10.3168/jds.S0022-0302(97)76055-7>
40. Haraszti J 1993: A tehén nemi működése és szaporodási zavarai. In: A háziállatok szülészete és szaporodásbiológiája (eds. Haraszti J, Zöldág L). Mezőgazda Kiadó, Budapest, pp. 327-411
41. AA, House JK, Thomson PC 2013: Artificial insemination field data on the use of sexed and conventional semen in nulliparous Holstein heifers. J Dairy Sci 96: 1905-1914
<https://doi.org/10.3168/jds.2012-5465>
42. M, Mohri MB, Fallah-Rad AH, Shahreza FD, Mohammadi M 2012: Oxidative stress and trace elements before and after treatment in dairy cows with clinical and subclinical endometritis. Rev Med Vet-Toulouse 163: 628-633
43. LE, Moisá SJ 2016: Stress, immunity, and the management of calves. J Dairy Sci 99: 3199-3216
<https://doi.org/10.3168/jds.2015-10198>
44. V, Bhanuprakash AG, Mandal RSK, Alam S, Gupta VK, Dimri U 2018: Oxidative stress and imbalance of serum trace mineral metabolism contribute to bovine respiratory disease in dairy calves. Indian J Anim Sci 88: 295-299
45. A, Krzyżewski J, Strzałkowska N, Poławska E, Bagnicka E, Wierzbicka A, Niemczuk K, Lipińska P, Horbańczuk JO 2012: Relations between the oxidative status, mastitis, milk quality and disorders of reproductive functions in dairy cows—A review. Anim Sci Pap Rep 30: 297-307
46. FM, Erisir M, Yuksel M 2016: Comparison of lipid peroxidation and several antioxidants in blood of normally calved and dystocia affected cows and their newborn calves. Isr J vet Med 71: 19-23
47. M 2001: Non-enzymatic antioxidative defense mechanisms against reactive oxygen species in bovine-retained and not-retained placenta: Vitamin C and glutathione. Reprod Domest Anim 36: 203-206
<https://doi.org/10.1046/j.1439-0531.2001.d01-38.x>
48. Z, Balázs A, Gálfi P, Farkas O 2015: Flavonoids - new perspectives in the veterinary medicine [in Hungarian]. Magy Áorv Lapja 137: 695-704
49. ME, Nonnecke BJ, Roth JA 1989: Alterations in bovine lymphocyte function during the periparturient period AJVR 1989 50 215 Kehrli.pdf. Am J Vet Res 50: 207-214
50. AF, Hill TM, Quigley JD, Heinrichs AJ, Linn JG, Drackley JK 2017: A 100-year review: Calf nutrition and management. J Dairy Sci 100: 10151-10172
<https://doi.org/10.3168/jds.2017-13062>
51. M, Kluciński W, Shaktur A, Sikora J 2005: Concentration of ascorbic acid in the blood of cows with subclinical mastitis. Pol J Vet Sci 8: 121-125
52. J, Vargová M, Paulíková I, Kováč G, Kostecká Z 2015: Oxidative stress and antioxidant status in dairy cows during prepartal and postpartal periods. Acta Vet Brno 84: 133-140
<https://doi.org/10.2754/avb201584020133>
53. L, Szenci O, Jurkovich V, Tegzes L, Tirián A, Solymosi N, Gyulay Gy, Brydl E 2009a: Periparturient risk assessment for retained placenta in dairy cows. Acta Vet Brno 78: 163-172
<https://doi.org/10.2754/avb200978010163>
54. L, Szenci O, Jurkovich V, Tegzes L, Tirián A, Solymosi N, Gyulay Gy, Brydl E 2009b: Risk assessment of postpartum uterine disease and consequences of puerperal metritis for subsequent metabolic status, reproduction and milk yield in dairy cows. Acta Vet Hung 57: 155-169
<https://doi.org/10.1556/avet.57.2009.1.16>
55. Leblanc S 2006: Monitoring Programs for Transition Dairy Cows. In: Proceedings of the 24th World Buiatrics Congress. October 15-19, Nice, France, pp. 460-471
56. JLMR, Soom A Van, Opsomer G, Goovaerts IGF, Bols PEJ 2008: Reduced fertility in high-yielding dairy cows: Are the oocyte and embryo in danger? Part II. Mechanisms linking nutrition and reduced oocyte and embryo quality in high-yielding dairy cows. Reprod Domest Anim 43: 623-632
<https://doi.org/10.1111/j.1439-0531.2007.00961.x>
57. JLMR, Vanholder T, Opsomer G, Van Soom A, de Kruif A 2006: The in vitro development of bovine oocytes after maturation in glucose and beta-hydroxybutyrate concentrations associated with negative energy balance in dairy cows. Reproduction in domestic animals. Zuchthygiene 41: 119-123
<https://doi.org/10.1111/j.1439-0531.2006.00650.x>
58. K 2012: Health and immune function of dairy calves. WCDS Adv Dairy Technol 24: 177-188
59. H, Åkesson B 2000: Antioxidative factors in milk. Brit J Nutr 84: 103-110
<https://doi.org/10.1017/S0007114500002324>
60. MC 2001: Reproductive loss in high-producing dairy cattle: where will it end? J Dairy Sci 84: 1277-1293
<https://doi.org/10.3168/jds.S0022-0302(01)70158-0>
61. JK, Robarts ADJ, Reynolds GW 2013: The effect of increasing the nutrient and amino acid concentration of milk diets on dairy heifer individual feed intake, growth, development, and lactation performance. J Dairy Sci 96: 6539-6549
<https://doi.org/10.3168/jds.2012-6489>
62. T 2012: Vitamin C nutrition in cattle. Asian Austral J Anim 25: 597-605
<https://doi.org/10.5713/ajas.2012.r.01>
63. JM, Fridovich I 1969: Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244: 6049-6055
<https://doi.org/10.1016/S0021-9258(18)63504-5>
64. JJ 2016: Accelerated pre-weaning growth rates in dairy calves: do antioxidants have a place? Anim Prod Sci 56: 1275-1284
<https://doi.org/10.1071/AN15310>
65. MA 2007: Timely topics in nutrition: oxidative stress, antioxidants, and assessment of oxidative stress in dogs and cats. J Am Vet Med Assoc 231: 714-720
<https://doi.org/10.2460/javma.231.5.714>
66. M, Balogh K 2009: Prooxidant mechanisms of selenium toxicity - A review. Acta Biologica Szegediensis 53: 15-18
67. K, Illek J, Bezděková Z, Šimková I 2019: Glutathione as an antioxidant marker: Determination of glutathione concentration in the breast muscles and liver of broilers supplemented with different selenium sources. Acta Vet Brno 88: 157-163
<https://doi.org/10.2754/avb201988020157>
68. K, Illek J, Kadek R 2020: Glutathione redox state, glutathione peroxidase activity and selenium concentration in periparturient dairy cows, and their relation with negative energy balance. J Anim Feed Sci 29: 19-26
<https://doi.org/10.22358/jafs/117867/2020>
69. DE, McCoy GC, Hurley WL 1997: Effects of quality, quantity, and timing of colostrum feeding and addition of a dried colostrum supplement on immunoglobulin G1 absorption in Holstein bull calves. J Dairy Sci 80: 747-753
<https://doi.org/10.3168/jds.S0022-0302(97)75994-0>
70. M, Pantaleo M, Roncetti M, Piccinno M, Rizzo A, Sciorsci RL 2014: Oxidative stress in neonatology. A review. Reprod Dom Anim 49: 7-16
<https://doi.org/10.1111/rda.12230>
71. B, Sblendorio V 2007: Oxidative stress tests: Overview on reliability and use. Part II. Eur Rev Med Pharmaco 11: 383-399
72. Y-MM, Erve T, O’Brien K, Nichols H, Weinberg C, Sandler D 2019: Association of dietary and plasma carotenoids with urinary F2-isoprostanes (FS15-02-19). Curr Dev Nutr 3: 469
73. G, Faustini M, Corino C, Rossi R 2013: Kit Radicaux Libres, a biological application for monitoring oxidative stress in pigs. Ital J Anim Sci 12: 3, e70
<https://doi.org/10.4081/ijas.2013.e70>
74. K, Illek J, Kadek R 2019: Determination of antioxidant indices in dairy cows during the periparturient period. Acta Vet Brno 88: 3-9
<https://doi.org/10.2754/avb201988010003>
75. R, Talukder S, Muscatello G, Celi P 2014: Assessment of oxidative stress biomarkers in exhaled breath condensate and blood of dairy heifer calves from birth to weaning. Vet J 202: 583-587
<https://doi.org/10.1016/j.tvjl.2014.10.025>
76. R, Naresh R, Patra RC, Swarup D 2006: Erythrocyte lipid peroxides and blood zinc and copper concentrations in acute undifferentiated diarrhoea in calves. Vet Res Commun 30: 249-254
<https://doi.org/10.1007/s11259-006-3185-8>
77. A, Minoia G, Trisolini C, Manca R, Sciorsci RL 2007: Concentrations of free radicals and beta-endorphins in repeat breeder cows. Anim Reprod Sci 100: 257-263
<https://doi.org/10.1016/j.anireprosci.2006.08.013>
78. PL 1994: The estrus detection problem: new concepts, technologies, and possibilities. J Dairy Sci 77: 2745-2753
<https://doi.org/10.3168/jds.S0022-0302(94)77217-9>
79. Sies H, Beckmann R, Brigelius R, Cadenas E, Clark IA, Cohen GC, Cowden WB, Evans CG, Flohé L, Frei B, Früstenberger G, Giertz H, Hamers MN, Jones DP, Kappus H, Loschen G, Marks F, Orrenius S, Reed DJ, Richter C, Roos D, Schulte-Frohlinde D, Smith MT, Stern A, Thor H, von Sonntag C, Wills ED, Willson RL 1985: Oxidative Stress. Academic Press Inc., London, 507 p.
80. S, Fleischer P, Pěnkava O, Skřivánek M 2014: The assessment of colostral immunity in dairy calves based on serum biochemical indicators and their relationships. Acta Vet Brno 83: 151-156
<https://doi.org/10.2754/avb201483020151>
81. RF, Oultram J, Dobson H 2014: Herd monitoring to optimise fertility in the dairy cow: making the most of herd records, metabolic profiling and ultrasonography. Animal 8: 185-98
<https://doi.org/10.1017/S1751731114000597>
82. Soares R, Costa C 2009: Oxidative Stress, Inflammation and Angiogenesis in the Metabolic Syndrome. Springer Science, New York, NY, USA, pp. 1-19
83. F, Van Amburgh ME 2013: Lactation biology symposium: The effect of nutrient intake from milk or milk replacer of preweaned dairy calves on lactation milk yield as adults: A meta-analysis of current data. J Anim Sci 91: 706-712
<https://doi.org/10.2527/jas.2012-5834>
84. MA, Liu RH, Cherney DJR 2012: Short communication: Antioxidant activity of calf milk replacers. J Dairy Sci 95: 2703-2706
<https://doi.org/10.3168/jds.2011-5099>
85. LM, Aitken SL 2009: Impact of oxidative stress on the health and immune function of dairy cattle. Vet Immunol Immunop 128: 104-109
<https://doi.org/10.1016/j.vetimm.2008.10.305>
86. LM 2013: Selenium-dependent regulation of oxidative stress and immunity in periparturient dairy cattle. Vet Med Int 2013: 3-8
<https://doi.org/10.1155/2013/154045>
87. LM, Mavangira V 2014: The nexus between nutrient metabolism, oxidative stress and inflammation in transition cows. Anim Prod Sci 54: 1204-1214
<https://doi.org/10.1071/AN14503>
88. JW, Weiss WP 2008: Role of antioxidants and trace elements in health and immunity of transition dairy cows. Vet J 176: 70-76
<https://doi.org/10.1016/j.tvjl.2007.12.015>
89. FX, Hill TM, Heinrichs AJ, Bateman HG, Aldrich JM, Schlotterbeck RL 2011: Effects of including corn distillers dried grains with solubles in dairy calf feeds. J Dairy Sci 94: 3037-3044
<https://doi.org/10.3168/jds.2010-3845>
90. S, Kerrisk KL, Gabai G, Celi P 2017: Role of oxidant - antioxidant balance in reproduction of domestic animals: Review. Anim Prod Sci 57: 1588-1597
<https://doi.org/10.1071/AN15619>
91. F, Gábor G, Mézes M, Váradi É, Ózsvári L, Sasser RG, Abonyi-Tóth Z 2006: Improving the reproductive efficiency by zoo-technical methods at a dairy farm. Reprod Domest Anim 41: 184-188
<https://doi.org/10.1111/j.1439-0531.2006.00671.x>
92. DL, Calderón Díaz JA, Stalder KJ, Heinrichs AJ, Dechow CD 2016: Association of calf growth traits with production characteristics in dairy cattle. J Dairy Sci 99: 8347-8355
<https://doi.org/10.3168/jds.2015-10738>
93. CI, Silva LG, Lúcio CF, Veiga GAL 2019: Oxidative stress and acid-base balance during the transition period of neonatal Holstein calves submitted to different calving times and obstetric assistance. J Dairy Sci 102: 1542-1550
<https://doi.org/10.3168/jds.2018-14754>
94. M, Vernet J, Dardillat C, Demigne C, Davicco M-J 1989: Energy metabolism and thermoregulation in the newborn calf; Effect of calving conditions. Can J Anim Sci 122: 113-122
<https://doi.org/10.4141/cjas89-014>
95. CL, Rosengren LB 2009: Factors associated with serum immunoglobulin levels in beef calves from Alberta and Saskatchewan and association between passive transfer and health outcomes. Can Vet J 50: 275-281
96. SW, Williams EJ, Evans ACO 2011: A review of the causes of poor fertility in high milk producing dairy cows. Anim Reprod Sci 123: 127-138
<https://doi.org/10.1016/j.anireprosci.2010.12.001>
97. DM, Jasper J, Hötzel MJ 2008: Understanding weaning distress. Appl Anim Behav Sci 110: 24-41
<https://doi.org/10.1016/j.applanim.2007.03.025>
98. DM, Tyler JW, VanMetre DC, Hostetler DE, Barrington GM 2000: Passive transfer of colostral immunoglobulins in calves. J Vet Intern Med 14: 569-577
<https://doi.org/10.1111/j.1939-1676.2000.tb02278.x>
99. H, Huang Y 2012: Trends and performance of oxidative stress research from 1991 to 2010. Scientometrics 91: 51-63
<https://doi.org/10.1007/s11192-011-0535-2>
100. MC, Leslie KE, Godden SM, Hodgins DC, Lissemore KD, LeBlanc SJ 2014: Factors associated with morbidity, mortality, and growth of dairy heifer calves up to 3 months of age. Prev Vet Med 113: 231-240
<https://doi.org/10.1016/j.prevetmed.2013.10.019>
101. H, Şimşek H, Saat N, Yükse M 2011: Effects of dystocia on lipid peroxidation and enzymatic and non-enzymatic antioxidants in crossbred dairy cows. B Vet I Pulawy 55: 135-139
102. J, Wu MM, Xiao H, Ren WK, Duan JL, Yang G, Li TJ, Yin YL 2014: Development of an antioxidant system after early weaning in piglets. J Anim Sci 92: 612-619
<https://doi.org/10.2527/jas.2013-6986>
103. B, Bademkiran S, Cakir DU 2007: Total anti-oxidant capacity and oxidative stress in dairy cattle and their associations with dystocia. Med Weter 63: 167-170

