Acta Vet. Brno 2021, 90: 91-98

https://doi.org/10.2754/avb202190010091

Protective effect of Celtis tournefortii against copper-induced toxicity in rat liver

Mehmet Ali Temiz1, Atilla Temur2, Yusuf Akgeyik2, Ahmet Uyar3

1Karamanoğlu Mehmetbey University, Vocational School of Technical Sciences, Programme of Medicinal and Aromatic Plants, Karaman, Turkey
2Van Yuzuncu Yil University, Faculty of Education, Department of Mathematics and Sciences, Van, Turkey
3Hatay Mustafa Kemal University, Faculty of Veterinary Medicine, Department of Pathology, Hatay, Turkey

Received June 15, 2020
Accepted February 24, 2021

References

1. Aebi H 1984: Catalase in vitro. Methods Enzymol 105: 121-126 <https://doi.org/10.1016/S0076-6879(84)05016-3>
2. Arafa AF, Ghanem HZ, Soliman MS, El-Meligy E 2017: Modulation effects of quercetin against copper oxide nanoparticles-induced liver toxicity in rats. Egypt Pharma J 16:78-86 <https://doi.org/10.4103/epj.epj_15_17>
3. Brewer GJ 2012: Metals in the causation and treatment of Wilsonís disease and Alzheimerís disease, and copper lowering therapy in medicine. Inorganica Chim Acta 393: 135-141 <https://doi.org/10.1016/j.ica.2012.06.014>
4. Cherrak SA, Mokhtari-Soulimane N, Berroukeche F, Bensenane B, Cherbonnel A, Merzouk H, Elhabiri M 2016: In vitro antioxidant versus metal ion chelating properties of flavonoids: A structure-activity investigation. PLOS ONE 11:1-21 <https://doi.org/10.1371/journal.pone.0165575>
5. Dasari R, Sathyavati D, Belide SK, Reddy PJ, Abbulu K 2013: Evaluation of antioxidant activity of two important memory enhancing medicinal plants Celtis timorensis and Vanda spathulata. Asian J Pharm Clin Res 6: 153-155
6. DRI (Dietary Reference Intakes) 2001: Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Institute of Medicine (US) Panel on Micronutrients. Washington (DC), National Academies Press (US)
7. Erel Ö 2004: A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 37: 277-285 <https://doi.org/10.1016/j.clinbiochem.2003.11.015>
8. Erel Ö 2005: A new automated colorimetric method for measuring total oxidant status. Clin Biochem 38: 1103-1111 <https://doi.org/10.1016/j.clinbiochem.2005.08.008>
9. El-Alfy TS, El-Gohary HMA, Sokkar NM, Hosny M, Al-Mahdy DA 2011: A new flavonoid c-glycoside from Celtis australis L. and Celtis occidentalis L. leaves and potential antioxidant and cytotoxic activities. Sci Pharm 79: 963-975 <https://doi.org/10.3797/scipharm.1108-19>
10. Fall AD, Dieng SIM, Diatta-Badji K, Diatta W, Bassene E 2017: Phytochemical screening, phenol content and antioxidant studies of ethanol leaf extract of Celtis toka (Forssk.) Hepper& J.R.I. Wood. J Pharmacogn Phytochem 6: 488-492
11. Filali-Ansari N, El Abbouyi A, El Khyari S 2015: Antioxidant properties of leaves and seeds hydromethanolic extracts from Celtis australis. J Chem Biol Phys Sci B 5: 2834-2843
12. Gaetke LM, Chow-Johnson HS, Chow CK 2014: Copper: Toxicological relevance and mechanisms. Arch Toxicol 88: 1929-1938 <https://doi.org/10.1007/s00204-014-1355-y>
13. Geidam MA, Adole OS 2014: Effects of the aqueous ethanolic leaves extract of Celtis integrifolia on liver function of wister strain albino rats. Int J Sci Res Manag 2: 713-718
14. Gonçalves NZ, Lino Júnior RS, Rodrigues CR, Rodrigues AR, Cunha LC 2015: Acute oral toxicity of Celtis iguanaea (Jacq.) Sargent leaf extract (Ulmaceae) in rats and mice. Rev Bras Plantas Med 17: 1118-1124 <https://doi.org/10.1590/1983-084x/14_128>
15. Ibrahim MA, Khalaf AA, Galal MK, Ogaly HA, Hassa AHM 2015: Ameliorative influence of green tea extract on copper nanoparticle-induced hepatotoxicity in rats. Nanoscale Res Lett 10: 2-9 <https://doi.org/10.1186/s11671-015-1068-z>
16. Jomova K, Valko M 2011: Advances in metal-induced oxidative stress and human disease. Toxicology 283: 65-87 <https://doi.org/10.1016/j.tox.2011.03.001>
17. Keser S, Keser F, Kaygili O, Tekin S, Turkoglu I, Demir E, Turkoglu S, Karatepe M, Sandal S, Kirbag S 2017: Phytochemical compounds and biological activities of Celtis tournefortii fruits. Anal Chem Let 7: 344-355 <https://doi.org/10.1080/22297928.2017.1329664>
18. Khalid S, Afzal N, Khan JA, Hussain Z, Qureshi AS, Hafeez A, Jamil Y 2018: Antioxidant resveratrol protects against copper oxide nanoparticle toxicity in vivo. Naunyn-Schmiedeberg's Arch Pharmacol 391: 1053-1062 <https://doi.org/10.1007/s00210-018-1526-0>
19. Kioukia-Fougia N, Georgiadis N, Tsarouhas K, Vasilaki F, Fragkiadaki P, Meimeti E, Tsitsimpikou C 2016: Synthetic and natural nutritional supplements: Health ìalliesî or risks to public health? Recent Pat Inflamm Allergy Drug Discov 10: 72-85 <https://doi.org/10.2174/1872213X10666160923163700>
20. Lee IC, Ko JW, Park SH, Lim JO, Shin IS, Moon C, Kim S, Heo J, Kim J 2016: Comparative toxicity and biodistribution of copper nanoparticles and cupric ions in rats. Int J Nanomedicine 11: 2883-2900 <https://doi.org/10.2147/IJN.S112415>
21. Li YW, Wang XH, Nin Q, Luo XP 2008: Excessive copper induces hepatocyte apoptosis and affects Bax and Bcl-2 expression in rat liver. Chin J Contemp Pediatr 10: 42-46
22. Liu CM, Zheng GH, Ming QL, Sun JM, Cheng C 2013: Protective effect of quercetin on lead-induced oxidative stress and endoplasmic reticulum stress in rat liver via the IRE1/JNK and PI3K/Akt pathway. Free Radic Res 47: 192-201 <https://doi.org/10.3109/10715762.2012.760198>
23. McCord JM, Fridovich I 1969: Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244: 6049-6055 <https://doi.org/10.1016/S0021-9258(18)63504-5>
24. Mirani N, Ashraf JA, Siddique J, Rub A 2012: Protective effect of rutin against cadmium induced hepatotoxicity in Swiss albino mice. J Pharmacol Toxicol 7: 150-157 <https://doi.org/10.3923/jpt.2012.150.157>
25. Nabavi SF, Nabavi SM, Habtemariam S, Moghaddam AH, Sureda A, Jafari M, Latifi AM 2013: Hepatoprotective effect of gallic acid isolated from Peltiphyllum peltatum against sodium fluoride-induced oxidative stress. Ind Crops Prod 44: 50-55 <https://doi.org/10.1016/j.indcrop.2012.10.024>
26. Ntchapda F, Dimo T, Mbongué G, Atchade AT, Kamtchouing P, Enow G 2008: Acute Toxic Effects of the Aqueous Leaf Extract of Celtis durandii Engler (Ulmaceae) on Mice. West Afr J Pharmacol Drug Res 24: 1-7
27. Paglia DE, Valentine WN 1967: Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70: 158-169
28. Pal A 2014: Copper toxicity induced hepatocerebral and neurodegenerative diseases: An urgent need for prognostic biomarkers. NeuroToxicology 40: 97-101 <https://doi.org/10.1016/j.neuro.2013.12.001>
29. Rizzi R, Caroli A, Bolla P, Acciaioli A, Pagnacco G 1988: Variability of reduced glutathione levels in massese ewes and its effect on daily milk production. J Dairy Res 55: 345-353 <https://doi.org/10.1017/S0022029900028600>
30. Scott SE, Rozin P, Small DA 2020: Consumers prefer ìnaturalî more for preventatives than for curatives. J Consum Res 47: 454-471 <https://doi.org/10.1093/jcr/ucaa034>
31. Singleton VL, Rossi JA 1965: Colorimetry of total phenolics with phosphomolybdic-phosphotungustic acid reagents. Am J Enol Viticult 16: 144-158
32. Slater TF 1984: Overview of methods used for detecting lipid peroxidation. Methods Enzymol 105: 283-305 <https://doi.org/10.1016/S0076-6879(84)05036-9>
33. Temiz MA, Temur A 2017: Effect of solvent variation on polyphenolic profile and total phenolic content of olive leaf extract. YYU J Agr Sci 27: 43-50
34. Temiz MA, Temur A, Kaval Oguz E 2018: Antioxidant and hepatoprotective effects of vitamin E and melatonin against copper-induced toxicity in rats. Trop J Pharm Res 17: 1025-1031 <https://doi.org/10.4314/tjpr.v17i6.7>
35. Valko M, Morris H, Cronin MT 2005: Metals, toxicity and oxidative stress. Curr Med Chem 12: 1161-1208 <https://doi.org/10.2174/0929867053764635>
36. WHO 2003: Copper in drinking-water. Background document for preparation of WHO guidelines for drinking-water quality. World Health Organization, Geneva
37. Yıldırım I, Uğur Y, Kutlu T 2017: Investigation of antioxidant activity and phytochemical compositions of Celtis tournefortii. Free Rad Antiox 7: 160-165 <https://doi.org/10.5530/fra.2017.2.24>
38. Zanchet B, Gomes DB, Corralo VS et al. 2018: Effects of hydroalcoholic extract of Celtis iguanaea on markers of cardiovascular diseases and glucose metabolism in cholesterol-fed rats. Rev Bras Farmacogn 28: 80-91 <https://doi.org/10.1016/j.bjp.2017.12.001>
39. Zhang YJ, Gan RY, Li S, Zhou Y, Li AN, Xu DP, Li HB 2015: Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules 20: 21138-21156 <https://doi.org/10.3390/molecules201219753>
40. Zhang L, Virgous C, Si H 2019: Synergistic anti-inflammatory effects and mechanisms of combined phytochemicals. J Nutr Biochem 69: 19-30 <https://doi.org/10.1016/j.jnutbio.2019.03.009>
41. Zhishen J, Mengcheng T, Jianming W 1999: The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64: 555-559 <https://doi.org/10.1016/S0308-8146(98)00102-2>
front cover
  • ISSN 0001-7213 (printed)
  • ISSN 1801-7576 (electronic)

Current issue

Archive