Acta Vet. Brno 2021, 90: 145-154
https://doi.org/10.2754/avb202190020145
Boosting the potential of cattle breeding using molecular biology, genetics, and bioinformatics approaches – a review
References
1. I, Húth B, Füller I, Gábor G, Holló G, Zsolnai A 2018: Effect of single-nucleotide polymorphisms on the breeding value of fertility and breeding value of beef in Hungarian Simmental cattle. Acta Vet Hung 66: 215-225
<https://doi.org/10.1556/004.2018.020>
2. A 2012: Ruminant Nutrition Symposium: Optimizing performance of the offspring: Nourishing and managing the dam and postnatal calf for optimal lactation, reproduction, and immunity. J Anim Sci 90: 1835-1845
<https://doi.org/10.2527/jas.2011-4516>
3. BR, McDaniel BT, Robison OW 1985: Effects of cytoplasmic inheritance on production traits of dairy cattle. J Dairy Sci 68: 2038-2051
<https://doi.org/10.3168/jds.S0022-0302(85)81066-3>
4. DP, Wall E, Pryce JE 2014: Genetics and genomics of reproductive performance in dairy and beef cattle. Animal 8 Suppl 1: 105-121
<https://doi.org/10.1017/S1751731114000743>
5. DM, McClure JC, Schnabel RD, Rosen BD, Medrano JF, Smith TPL 2020: Symposium review: Advances in sequencing technology herald a new frontier in cattle genomics and genome-enabled selection. J Dairy Sci 103: 5278-5290
<https://doi.org/10.3168/jds.2019-17693>
6. D, Chung H, Dassonneville R, David X, Eggen A, Fritz S, Gietzen KJ, Hayes BJ, Lawley CT Sonstegard TS 2012: Design of a bovine low-density SNP array optimized for imputation. PloS one 7: e34130
<https://doi.org/10.1371/journal.pone.0034130>
7. L, Lucas-Hahn A, Rath D, Niemann H 1995: Collection of oocytes from cattle via follicular aspiration aided by ultrasound with or without gonadotropin pretreatment and in different reproductive stages. Theriogenology 43: 667-675
<https://doi.org/10.1016/0093-691X(94)00072-3>
8. A, Michot P, Baur A, Saintilan R, Hozé C, Valour D, Guillaume F, Boichon D, Barbat A, Boichard D, Schibler L Fritz S 2014: Genetic tools to improve reproduction traits in dairy cattle. Reprod Fertil Dev 27: 14-21
<https://doi.org/10.1071/RD14379>
9. DF, Lancto CA, Zang B, Kim ES, Walton M, Oldeschulte D, Seabury C, Sonstegard TS, Fahrenkrug SC 2016: Production of hornless dairy cattle from genome-edited cell lines. Nat Biotechnol 34: 479-481
<https://doi.org/10.1038/nbt.3560>
10. TR, Ryan DP, Fitzgerald AM, Evans RD, Berry DP 2016: Genetic relationships between detailed reproductive traits and performance traits in Holstein-Friesian dairy cattle. J Dairy Sci 99: 1286-1297
<https://doi.org/10.3168/jds.2015-9825>
11. RJ 2016: Mitochondrial replacement therapy: the UK and US regulatory landscapes. J Law Biosci 3: 726-735
<https://doi.org/10.1093/jlb/lsw051>
12. Z, Hagen DE, Wang J, Elsik CG, Ji T, Siqueira LG, Hansen PJ Rivera RM 2016: Global assessment of imprinted gene expression in the bovine conceptus by next generation sequencing. Epigenetics 11: 501-516
<https://doi.org/10.1080/15592294.2016.1184805>
13. PJ, McPherson FJ 2016: Bull breeding soundness, semen evaluation and cattle productivity. Anim Reprod Sci 169: 32-36
<https://doi.org/10.1016/j.anireprosci.2016.03.001>
14. J-J, Tual K, de Preaumont H, Regaldo D 2009: A mating method accounting for inbreeding and multi-trait selection in dairy cattle populations. Genet Sel Evol 41: 7
<https://doi.org/10.1186/1297-9686-41-7>
15. SR, Spelman RJ, Littlejohn MD 2017: Breeding and Genetics Symposium: Breeding heat tolerant dairy cattle: the case for introgression of the “slick” prolactin receptor variant into Bos taurus dairy breeds. J Anim Sci 95: 1788-1800
16. RV, da Silva Cardoso CR, Butzke G, Dode MAN, Rumpf R, Franco MM 2016: Biopsy of bovine embryos produced in vivo and in vitro does not affect pregnancy rates. Theriogenology 90: 25-31
<https://doi.org/10.1016/j.theriogenology.2016.11.003>
17. A 2017: Economic trade-offs between genetic improvement and longevity in dairy cattle. J Dairy Sci 100: 4184-4192
<https://doi.org/10.3168/jds.2016-11847>
18. MG, Waters SM, Parr MH, Kenny DA 2016: Pregnancy losses in cattle: potential for improvement. Reprod Fertil Dev 28: 83-93
<https://doi.org/10.1071/RD15366>
19. PAS, Dos Santos FC, Lam S, Suárez-Vega A, Miglior F, Schenkel FS, Diniz LAF, Id-Lahoucine S, Carvalho MRS, Cánovas A 2018: Genetic mechanisms underlying spermatic and testicular traits within and among cattle breeds: systematic review and prioritization of GWAS results. J Anim Sci 96: 4978-4999
<https://doi.org/10.1093/jas/sky073.023>
20. Y, Wu H, Wang Y, Liu X, Chen L, Li Q, Cui C, Liu X, Zhang J, Zhang Y 2017: Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biol 18: 13
<https://doi.org/10.1186/s13059-016-1144-4>
21. A, Cole JB, VanRaden PM, Wiggans GR, Ruiz-López FJ, Van Tassell CP 2016: Changes in genetic selection differentials and generation intervals in US Holstein dairy cattle as a result of genomic selection. Proc Natl Acad Sci USA 113: 3995-4004
<https://doi.org/10.1073/pnas.1519061113>
22. DL, Seidel GE 2008: History of commercializing sexed semen for cattle. Theriogenology 69: 886-895
<https://doi.org/10.1016/j.theriogenology.2008.01.006>
23. ME, Hayes BJ 2007: Genomic selection. J Anim Breed Genet 124: 323-330
<https://doi.org/10.1111/j.1439-0388.2007.00702.x>
24. K, Van Soom A, Van Poucke M, Vandaele L, Vandesompele J, Van Zeveren A, Peelman LJ 2007: Identification and expression analysis of genes associated with bovine blastocyst formation. BMC Dev Biol 7: 64
<https://doi.org/10.1186/1471-213X-7-64>
25. A, Krebs S, Heininen-Brown M, Zakhartchenko V, Blum H Wolf E 2014: Genome activation in bovine embryos: review of the literature and new insights from RNA sequencing experiments. Anim Reprod Sci 149: 46-58
<https://doi.org/10.1016/j.anireprosci.2014.05.016>
26. DK, JTurner K, Silvestri G, Smith C, Dobson G, Black DH, Sinclair KD, Handyside AH 2019: The use of Karyomapping for genomic evaluation and PGT-A of preimplantation cattle embryos: the first live-born calves. Reprod. Biomed. Online 38: 54-55
27. BJ, Daetwyler HD 2019: 1000 bull genomes project to map simple and complex genetic traits in cattle: applications and outcomes. Annual review of animal biosciences 7: 89-102
<https://doi.org/10.1146/annurev-animal-020518-115024>
28. M, Turnbull D 2018: Progress in mitochondrial replacement therapies. Nat Rev Mol Cell Biol 19: 71-72
<https://doi.org/10.1038/nrm.2018.3>
29. GE, Havird JC, Sloan DB, Burton RS, Greening C, Dowling DK 2019: Assessing the fitness consequences of mitonuclear interactions in natural populations. Biol Rev Camb Philos Soc 94: 1089-1104
<https://doi.org/10.1111/brv.12493>
30. M, Kubicek D, Broz P, Hulinska P, Hanzalova K, Griffin D, Machatkova M, Rubes J 2016: Aneuploidy detection and mtDNA quantification in bovine embryos with different cleavage onset using a next-generation sequencing-based protocol. Cytogenet Genome Res 150: 60-67
<https://doi.org/10.1159/000452923>
31. JT, Pryce JE, Baes C, Maltecca C 2017: Invited review: Inbreeding in the genomics era: Inbreeding, inbreeding depression, and management of genomic variability. J Dairy Sci 100: 6009-6024
<https://doi.org/10.3168/jds.2017-12787>
32. PD, Lander ES, Zhang F 2014: Development and applications of CRISPR-Cas9 for genome engineering. Cell 157: 1262-1278
<https://doi.org/10.1016/j.cell.2014.05.010>
33. E, White BA, Mizrahi I 2014: Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency. PLoS One 9: e85423
<https://doi.org/10.1371/journal.pone.0085423>
34. Z, Sun J, Dong H, Luo O, Zheng X, Obergfell C, Tang Y, Bi J, O’Neill R, Ruan Y, Chen J, Tian XC 2014: Transcriptional profiles of bovine in vivo pre-implantation development. BMC Genomics 15: 756
<https://doi.org/10.1186/1471-2164-15-756>
35. K, Block J, Hansen PJ, De Vries A 2017: Comparison between an exclusive in vitro–produced embryo transfer system and artificial insemination for genetic, technical, and financial herd performance. J Dairy Sci 100: 5729-5745
<https://doi.org/10.3168/jds.2016-11979>
36. E, Yilmazbas-Mecitoglu G, Keskin A, Alkan A, Tasdemir U, Santos JE Gumen A 2014: Fertility in dairy cows after artificial insemination using sex-sorted sperm or conventional semen. Reprod Domest Anim 49: 333-337
<https://doi.org/10.1111/rda.12280>
37. P, Wei H, Xiang T, Molina JA, Metzger J, Broek D, Kasinathan S, Faber DC, Allan MF 2015: Acceleration of genetic gain in cattle by reduction of generation interval. Sci Rep 5: 8674
<https://doi.org/10.1038/srep08674>
38. JN, Keuter EM, Seabury CM, Neupane M, Moraes JGN, Dalton J, Burns GW, Spencer TE, Neibergs HL 2019: Validation of 46 loci associated with female fertility traits in cattle. BMC Genomics 20: 576
<https://doi.org/10.1186/s12864-019-5935-3>
39. HJ, Ross EM, Nguyen LT, Lyons RE, Moore SS, Hayes BJ 2020: Characterization of the poll allele in Brahman cattle using long-read Oxford Nanopore sequencing. J Anim Sci 98: skaa127
<https://doi.org/10.1093/jas/skaa127>
40. RSF, Peterson AJ, Donnison MJ, Ravelich S, Ledgard AM, Li N, Oliver JE, Miller AL, Tucker FC, Breier B, Wells DN 2004: Cloned cattle fetuses with the same nuclear genetics are more variable than contemporary half-siblings resulting from artificial insemination and exhibit fetal and placental growth deregulation even in the first trimester. Biol Reprod 70: 1-11
<https://doi.org/10.1095/biolreprod.103.020982>
41. A, Aguilar I, Misztal I 2009: A relationship matrix including full pedigree and genomic information. J Dairy Sci 92: 4656-4663
<https://doi.org/10.3168/jds.2009-2061>
42. F, Li C, Chen Y, Liu J, Zhang C, Irving B, Fitzsimmons C, Plastow G, Guan LL 2019: Host genetics influence the rumen microbiota and heritable rumen microbial features associate with feed efficiency in cattle. Microbiome 7: 92
<https://doi.org/10.1186/s40168-019-0699-1>
43. H, Satter LD, Wiltbank MC 2004: Relationship between level of milk production and estrous behavior of lactating dairy cows. Anim Reprod Sci 81: 209-223
<https://doi.org/10.1016/j.anireprosci.2003.10.009>
44. MS, de Roos APW, de Vries AG, Druet T, Ducrocq V, Fritz S, Guillaume F, Guldbrandtsen B, Liu Z, Reents R 2011: A common reference population from four European Holstein populations increases reliability of genomic predictions. Genet Sel Evol 43: 43
<https://doi.org/10.1186/1297-9686-43-43>
45. A, Webster L 2019: Heritability, SNP, inbreeding, dairy cattle, genomic selection—and other keywords. J Anim Breed Genet 136: 1-2
<https://doi.org/10.1111/jbg.12377>
46. N, Guan LL 2017: Understanding the gut microbiome of dairy calves: Opportunities to improve early-life gut health. J Dairy Sci 100: 5996-6005
<https://doi.org/10.3168/jds.2016-12239>
47. K, Gibson JP, Mwai O, Mwacharo JM, Haile A, Getachew T, Mrode R, Kemp SJ 2019: Livestock genomics for developing countries–african examples in practice. Front Genet 10: 297
<https://doi.org/10.3389/fgene.2019.00297>
48. AR, Kanai M, Kamatani Y, Okada Y, Neale BM Daly MJ 2019: Clinical use of current polygenic risk scores may exacerbate health disparities. Nat Genet 51: 584-591
<https://doi.org/10.1038/s41588-019-0379-x>
49. E, Hötzel MJ, Robbins JA, Shriver A, Weary DM, von Keyserlingk MAG 2019: Public attitudes towards genetically modified polled cattle. PLoS One 14: e0216542
<https://doi.org/10.1371/journal.pone.0216542>
50. GR, Salvesen HA, Sternberg A, Lillico SG 2019: On-farm livestock genome editing using cutting edge reproductive technologies. Front Sustain Food Syst 3: 106
<https://doi.org/10.3389/fsufs.2019.00106>
51. Z, Oback B, Laible G 2020: Embryo-mediated genome editing for accelerated genetic improvement of livestock. Front Agric Sci Eng 7: 148-160
<https://doi.org/10.15302/J-FASE-2019305>
52. KA, Bibber-Krueger V, Drouillard JS 2013: Orally dosing steers with Lactipro (Megasphaera elsdenii) decreases the quantity of roughages fed during finishing. Kans Agric Exp Stn Res Rep 0: 55-58
53. ML, Cole JB, Sonstegard TS, Van Eenennaam AL 2019: Comparison of gene editing versus conventional breeding to introgress the POLLED allele into the US dairy cattle population. J Dairy Sci 102: 4215-4226
<https://doi.org/10.3168/jds.2018-15892>
54. JE, Hayes BJ, Pryce JE 2018: The cost-benefit of genomic testing of heifers and using sexed semen in pasture-based dairy herds. J Dairy Sci 101: 6159-6173
<https://doi.org/10.3168/jds.2017-13476>
55. AL, Lee SS, Greenlees KJ, Tadesse DA, Miller MF, Lombardi HA 2020: Template plasmid integration in germline genome-edited cattle. Nat Biotechnol 38: 163-164
<https://doi.org/10.1038/s41587-019-0394-6>
56. T, Berckmans D 2017: Developing precision livestock farming tools for precision dairy farming. Anim Front 7: 18-23
<https://doi.org/10.2527/af.2017.0104>
57. E, Neves ALA, Song Y, Guan LL 2020: The role of the gut microbiome in cattle production and health: Driver or passenger. Annu Rev Anim Biosci 8: 199-220
<https://doi.org/10.1146/annurev-animal-021419-083952>
58. HR, Brito LF, Lourenco DAL, Silva FF, Jamrozik J, Schaeffer LR, Schenkel FS 2019: Invited review: Advances and applications of random regression models: From quantitative genetics to genomics. J Dairy Sci 102: 7664-7683
<https://doi.org/10.3168/jds.2019-16265>
59. PJ, Cibelli JB 2010: Bovine somatic cell nuclear transfer. Methods Mol Biol 636: 155-177
<https://doi.org/10.1007/978-1-60761-691-7_10>
60. C, Wensch-Dorendorf M, Yin T, Dressel H, Swalve H, König S 2016: Evaluation of breeding strategies for polledness in dairy cattle using a newly developed simulation framework for quantitative and Mendelian traits. Genet Sel Evol 48: 1-11
<https://doi.org/10.1186/s12711-016-0228-7>
61. MM, Freeman AE, Lindberg GL, Koehler CM, Beitz DC 1994: The effect of mitochondrial DNA on milk production and health of dairy cattle. Livest Prod Sci 37: 283-295
<https://doi.org/10.1016/0301-6226(94)90123-6>
62. GE 2009: Brief introduction to whole-genome selection in cattle using single nucleotide polymorphisms. Reprod Fert Develop 22: 138-144
<https://doi.org/10.1071/RD09220>
63. Sejian V, Hyder I, Ezeji T, Lakritz J, Bhatta R, Ravindra JP, Prasad CS, Lal R 2015: Global warming: Role of livestock. In Springer Publisher (Ed.): Climate Change Impact on Livestock: Adaptation and Mitigation, pp. 141-169
64. K, John JCS 2017: Manipulating the mitochondrial genome to enhance cattle embryo development. G3: Genes Genom Genet 7: 2065-2080
<https://doi.org/10.1534/g3.117.042655>
65. I, Kantanen J, Russo I-RM, Orozco-terWengel P, Bruford MW 2019: Genomic selection strategies for breeding adaptation and production in dairy cattle under climate change. Heredity 123: 307-317
<https://doi.org/10.1038/s41437-019-0207-1>
66. TK, Schenk JL, Seidel GE 2005: High pressure flow cytometric sorting damages sperm. Theriogenology 64: 1035-1048
<https://doi.org/10.1016/j.theriogenology.2005.02.002>
67. JF, Taylor KH, Decker JE 2016: Holsteins are the genomic selection poster cows. Proc Natl Acad Sci USA 113: 7690-7692
<https://doi.org/10.1073/pnas.1608144113>
68. JF, Schnabel RD, Sutovsky P 2018: Review: Genomics of bull fertility. Animal 12: 172-183
<https://doi.org/10.1017/S1751731118000599>
69. C, Gregersen PK, Seldin MF 2008: Accounting for ancestry: population substructure and genome-wide association studies. Human Mol Genet 17: 143-150
<https://doi.org/10.1093/hmg/ddn268>
70. LM, Brink Z, Suh TK, Seidel GE 2004: Characteristics of calves produced with sperm sexed by flow cytometry/cell sorting. J Anim Sci 82: 1029-1036
<https://doi.org/10.2527/2004.8241029x>
71. DAR, Passaro C, Whitworth DJ, Holland MK 2020: Laser assisted blastomere extrusion biopsy of in vitro produced cattle embryos-A potential high throughput, minimally invasive approach for sampling pre-morula and morula stage embryos. Anim Reprod Sci 219: 106546
<https://doi.org/10.1016/j.anireprosci.2020.106546>
72. R, Rodriguez-Osorio N, Niemann H 2014: Epigenetic disorders and altered gene expression after use of Assisted Reproductive Technologies in domestic cattle. Epigenetics 9: 803-815
<https://doi.org/10.4161/epi.28711>
73. PM, Sanders AH, Tooker ME, Miller RH, Norman HD, Kuhn MT, Wiggans GR 2004: Development of a national genetic evaluation for cow fertility. J Dairy Sci 87: 2285-2292
<https://doi.org/10.3168/jds.S0022-0302(04)70049-1>
74. R, Moreno JF 2018: Review: Semen sexing - current state of the art with emphasis on bovine species. Animal 12: 85-96
<https://doi.org/10.1017/S1751731118000496>
75. J, Xiang H, Liu L, Kong M, Yin T, Zhao X 2017: Mitochondrial haplotypes influence metabolic traits across bovine inter-and intra-species cybrids. Sci Rep 7: 1-9
76. S, Weiss ZR, Gaur P, Forman E, Williams Z 2018: Rapid preimplantation genetic screening using a handheld, nanopore-based DNA sequencer. Fertil Steril 110: 910-916. e2
<https://doi.org/10.1016/j.fertnstert.2018.06.014>
77. I, Young L, DeSousa P, King T 2000: New opportunities in animal breeding and production - an introductory remark. Anim Reprod Sci 60-61: 5-14
<https://doi.org/10.1016/S0378-4320(00)00142-1>
78. JN, Ladoukakis ED, Enríquez JA, Dowling DK 2014: Mitonuclear interactions: evolutionary consequences over multiple biological scales. Philos Trans R Soc Lond B Biol Sci 369: 20130443
<https://doi.org/10.1098/rstb.2013.0443>
79. M-Y, Sun H-Z, Wu X-H, Liu J-X, Guan LL 2020: Multi-omics reveals that the rumen microbiome and its metabolome together with the host metabolome contribute to individualized dairy cow performance. Microbiome 8: 1-19
80. DR, Abecia L, Newbold CJ 2015: Manipulating rumen microbiome and fermentation through interventions during early life: a review. Front Microbiol 6: 1133
<https://doi.org/10.3389/fmicb.2015.01133>
81. J, Skarlupka JH, Cox MS, Resende RT, Fischer A, Kalscheur KF, McClure JC, Cole JB, Suen G, Bickhart DM 2020: Validating the use of bovine buccal sampling as a proxy for the rumen microbiota using a time course and random forest classification approach. Appl Environ Microbiol 86: e00861-20
<https://doi.org/10.1128/AEM.00861-20>
82. X-P, Dechow C, Liu W-S 2015: A limited number of Y chromosome lineages is present in North American Holsteins. J Dairy Sci 98: 2738-2745
<https://doi.org/10.3168/jds.2014-8601>
83. SY, Youn KY, Choi WJ, Jang G 2018: Development of genome engineering technologies in cattle: from random to specific. J Anim Sci Biotechnol 9: 16
<https://doi.org/10.1186/s40104-018-0232-6>
84. AA, Makova KD 2019: Investigating mitonuclear interactions in human admixed populations. Nat Ecol Evol 3: 213-222
<https://doi.org/10.1038/s41559-018-0766-1>

