Acta Vet. Brno 2021, 90: 331-347
https://doi.org/10.2754/avb202190030331
A review of the effects of metallic nanoparticles on fish
References
1. 2013: The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems. Chemosphere 93: 359-365
< BM, Batley GE, Jarolimek CV, Rogers NJ https://doi.org/10.1016/j.chemosphere.2013.04.096>
2. 2008: Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19: 1-7
< PV, Lian Wu Y, Gong Z, Valiyaveettil S https://doi.org/10.1088/0957-4484/19/25/255102>
3. 2015: Accumulation and toxicity of CuO and ZnO nanoparticles through waterborne and dietary exposure of goldfish (Carassius auratus). Environ Toxicol 30: 119-128
< M, Arslan Z, Demir V, Daniels J, Farah IO https://doi.org/10.1002/tox.22002>
4. 2019: Antimicrobial activity of titanium dioxide and zinc oxide nanoparticles supported in 4A zeolite and evaluation the morphological characteristic. Sci Rep 9: 17439
< M, Ehsani A, Divband B, Alizadeh-Sani M https://doi.org/10.1038/s41598-019-54025-0>
5. 2009: Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small 5: 1897-1910
< O, Albrecht RM, Fako VE, Furgeson DY https://doi.org/10.1002/smll.200801716>
6. 2019: Genotoxicity of gold nanoparticles in the gilthead seabream (Sparus aurata) after single exposure and combined with the pharmaceutical gemfibrozil. Chemosphere 220: 11-19
< A, Luis LG, Pinto E, Almeida A, Paíga P, Santos LHMLM, Delerue-Matos C, Trindade T, Soares AMVM, Hylland K, Loureiro S, Oliveira M https://doi.org/10.1016/j.chemosphere.2018.12.090>
7. 2013: Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc Chem Res 46: 854-862
< GE, Kirby JK, McLaughlin MJ https://doi.org/10.1021/ar2003368>
8. 2012: In vivo toxicity of silver nanoparticles and silver ions in zebrafish (Danio rerio). J Toxicol 2012: 1-9
< K, Hovgaard MB, Besenbacher F, Baatrup E https://doi.org/10.1155/2012/293784>
9. 1982: Surface studies by scanning tunneling microscopy. Phys Rev Lett 49: 57-61
< G, Rohrer H, Gerber C, Weibel E https://doi.org/10.1103/PhysRevLett.49.57>
10. 2019: How toxic is a non-toxic nanomaterial: Behaviour as an indicator of effect in Danio rerio exposed to nanogold. Aquat Toxicol 215: 1-10
< TL, Brand SJ, Ikenaka Y, Nakayama SMM, Ishizuka M, Wepener V https://doi.org/10.1016/j.aquatox.2019.105287>
11. 2018: The effect of silver nanoparticles and silver ions on zebrafish embryos (Danio rerio). Neuro Endocrinol Lett 39: 299-304
H, Hodkovicova N, Sehonova P, Blahova J, Marsalek B, Panacek A, Svobodova Z
12. 2019: Overview of the toxic effects of titanium dioxide nanoparticles in blood, liver, muscles, and brain of a Neotropical detritivorous fish. Environ Toxicol 34: 457-468
< TLL, Siqueira PR, Azevedo VC, Tavares D, Pesenti EC, Cestari MM, Martinez CBR, Fernandes MN https://doi.org/10.1002/tox.22699>
13. 2013: Gold nanoparticles and nanocomposites in clinical diagnostics using electrochemical methods. J Nanoparticles 2013: 1-12
< P, Singh J, Srivastava A, Goyal RN, Shim YB https://doi.org/10.1155/2013/535901>
14. 2015: Transmission and accumulation of nano-TiO2 in a 2-step food chain (Scenedesmus obliquus to Daphnia magna). Bull Environ Contam Toxicol 95: 145-149
< J, Li H, Han X, Wei X https://doi.org/10.1007/s00128-015-1580-y>
15. 2011: Behavioral effects of titanium dioxide nanoparticles on larval zebrafish (Danio rerio). Mar Pollut Bull 63: 303-308
< T-H, Lin C-Y, Tseng M-C https://doi.org/10.1016/j.marpolbul.2011.04.017>
16. 2013: Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish. Toxicol Appl Pharmacol 272: 519-528
< V, Capelle M, Fent K https://doi.org/10.1016/j.taap.2013.06.011>
17. 2019. Effects of food-borne ZnO nanoparticles on intestinal microbiota of common carp (Cyprinus carpio L.). Environ Sci Pollut Res 26: 25869-25873
< L, Barta J, Zuskova E https://doi.org/10.1007/s11356-019-05616-x>
18. 2018a: Chronic dietary toxicity of zinc oxide nanoparticles in common carp (Cyprinus carpio L.): Tissue accumulation and physiological responses. Ecotoxicol Environ Saf 147: 110-116
< L, Niksirat H, Velíšek J, Stará A, Hradilová Š, Kolařík J, Panáček A, Zusková E https://doi.org/10.1016/j.ecoenv.2017.08.024>
19. 2018b: Insight into the modulation of intestinal proteome of juvenile common carp (Cyprinus carpio L.) after dietary exposure to ZnO nanoparticles. Sci Total Environ 613-614: 62-71
< L, Niksirat H, Lünsmann V, Haange SB, Von Bergen M, Jehmlich N, Zuskova E https://doi.org/10.1016/j.scitotenv.2017.08.129>
20. 2017: Effects of chronic dietary exposure of zinc oxide nanoparticles on the serum protein profile of juvenile common carp (Cyprinus carpio L.). Sci Total Environ 579: 1504-1511
< L, Zusková E, Niksirat H, Panáček A, Lünsmann V, Haange S-B, von Bergen M, Jehmlich N https://doi.org/10.1016/j.scitotenv.2016.11.154>
21. 2013: Fish exposure to nano-TiO2 under different experimental conditions: Methodological aspects for nanoecotoxicology investigations. Sci Total Environ 463-464: 647-656
< Z, Castro VL, Feitosa LO, Lima R, Jonsson CM, Maia AHN, Fraceto LF https://doi.org/10.1016/j.scitotenv.2013.06.022>
22. 1996: Protection against heavy metal toxicity by mucus and scales in fish. Arch Environ Contam Toxicol 30: 319-326
< WF, Khan MAQ https://doi.org/10.1007/BF00212289>
23. 2014: Impact of gold nanoparticles on zebrafish exposed to a spiked sediment. Nanotoxicol 9: 71-80
< A, Ciutat A, Treguer-Delapierre M, Bourdineaud J-P https://doi.org/10.3109/17435390.2014.889238>
24. 2017: Nanoparticle interactions with co-existing contaminants: joint toxicity, bioaccumulation and risk. Nanotoxicol 11: 591-612
< R, Lin D, Zhu L, Majumdar S, White JC, Gardea-Torresde JL, Xing B https://doi.org/10.1080/17435390.2017.1343404>
25. 2015: Sulfidation of silver nanoparticle reduces its toxicity in zebrafish. Aquat Toxicol 158: 149-156
< GP, Ahmed KBA, Varsha MKNS, Shrijha BS, Lal KKS, Anbazhagan V, Thiagarajan R https://doi.org/10.1016/j.aquatox.2014.11.007>
26. 2013: Liver alterations in two freshwater fish species (Carassius auratus and Danio rerio) following exposure to different TiO2 nanoparticle concentrations. Microsc Microanal 19: 1131-1140
< MS, De Matos APA, Lourenço J, Castro L, Peres I, Mendonça E, Picado A https://doi.org/10.1017/S1431927613013238>
27. European Commission: Opininon on nanosilver: safety, health and environmental effects and role in antimicrobial resistance. Publications Office of the EU. Available at: https://op.europa.eu/en/publication-detail/-/publication/0dde6746-59a2-419d-91d8-fe2d14a2fec0/language-en. Last modified June 11, 2014. Accessed December 1, 2020.
28. 2015: A review of molecular mechanisms involved in toxicity of nanoparticles. Adv Pharm Bull 5: 447-454
< JK, Jafari S, Eghbal MA https://doi.org/10.15171/apb.2015.061>
29. 2007: Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): Gill injury, oxidative stress, and other physiological effects. Aquat Toxicol 84: 415-430
< G, Shaw B, Handy R https://doi.org/10.1016/j.aquatox.2007.07.009>
30. 2014: Mechanisms of nanotoxicity: Generation of reactive oxygen species. J Food Drug Anal 22: 64-75
< PP, Xia Q, Hwang H-M, Ray PC, Yu H https://doi.org/10.1016/j.jfda.2014.01.005>
31. 2011: Interspecies comparisons on the uptake and toxicity of silver and cerium dioxide nanoparticles. Environ Toxicol Chem 31: 144-154
< BK, Fernandes TF, Jepson MA, Lead JR, Tyler CR, Baalousha M, Biswas A, Britton GJ, Cole PA, Johnston BD, Ju-Nam Y, Rosenkranz P, Scown TM, Stone V https://doi.org/10.1002/etc.703>
32. 2013: Converging hazard assesment of gold nanoparticles to aquatic organisms. Chemposphere 93: 1194-1200
< JP, Núńez García M, Lopéz GD, Herranz AL, Cuevas L, Pérez-Pastrana E, Cuadal JS, Castelltort MR, Calvo AC https://doi.org/10.1016/j.chemosphere.2013.06.074>
33. 2015: Assessing the exposure to nanosilver and silver nitrate on fathead minnow gill gene expression and mucus production. Environ Nanotechnol Monit Manag 4: 58-66
N, Thornton C, Hawkins AD, Escalon L, Kennedy AJ, Steevens JA, Willett KL
34. Geertsma RE, Park MVDZ, Puts CF, Roszek B, Van der Stijl R, De Jong WH 2015: Nanotechnologies in medical devices. National Institute for Public Health and the Environment, Bilthoven, 83 p.
35. 2011: Impact of dietary gold nanoparticles in zebrafish at very low contamination pressure: The role of size, concentration and exposure time. Nanotoxicol 6: 144-160
< B, Ladhar C, Cambier S, Treguer-Delapierre M, Brčthes D, Bourdineaud J-P https://doi.org/10.3109/17435390.2011.562328>
36. Global Industry Analysts, Inc. 2020: Metal Nanoparticles - Global Market Trajectory & Analytics. Global Industry Analysts, Inc, Dublin, 187 p.
37. 2015: Modeling flows and concentrations of nine engineered nanomaterials in the Danish environment. International Int J Environ Res Public Health 12: 5581-5602
< F, Lassen C, Kjoelholt J, Christensen F, Nowack B https://doi.org/10.3390/ijerph120505581>
38. 2009: Modelled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43: 9216-9222
< F, Sonderer T, Scholz RW, Nowack B https://doi.org/10.1021/es9015553>
39. Grand View Research, Inc. 2020: Nanomaterials Market Size, Share & Trends Analysis Report By Product (Carbon Nanotubes, Titanium Dioxide), By Application (Medical, Electronics, Paints & Coatings), By Region, And Segment Forecasts, 2020 - 2027. Grand View Research, Inc., San Francisco, 113 p.
40. 2009: Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol Sci 107: 404-415
< RJ, Hyndman K, Denslow ND, Barber DS https://doi.org/10.1093/toxsci/kfn256>
41. 2008: Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27: 1972-1978
< RJ, Luo J, Gao J, Bonzongo J-C, Barber DS https://doi.org/10.1897/08-002.1>
42. 2015: Biologically synthesized silver nanoparticles enhances antibiotic activity against Gram-negative bacteria. J Ind Eng Chem 29: 217-226
< S https://doi.org/10.1016/j.jiec.2015.04.005>
43. 2008: Manufactured nanoparticles: their uptake and effects on fish – a mechanistic analysis. Ecotoxicology 17: 396-409
< RD, Henry TB, Scown TM, Johnston BD, Tyler CR https://doi.org/10.1007/s10646-008-0205-1>
44. 2015: Gill histopathologies following exposure to nanosilver or silver nitrate. J Toxicol Environ Health A 78: 301-315
< AD, Thornton C, Kennedy AJ, Bu K, Cizdziel J, Jones BW, Steevens JA, Willett KL https://doi.org/10.1080/15287394.2014.971386>
45. 2020: Effect of gold nanoparticles and ions exposure on the aquatic organisms. Bull Environ Contam Toxicol 105: 530-537
< D, Caloudova H, Palikova P, Kopel P, Plhalova L, Beklova M, Havelkova B https://doi.org/10.1007/s00128-020-02988-6>
46. 1998: Toward a better understanding of the bioavailability, physiology, and toxicity of silver in fish: Implications for water quality criteria. Environ Toxicol Chem 17: 547-561
< C, Wood CM https://doi.org/10.1002/etc.5620170405>
47. Horikoshi S, Serpone N 2013: Microwaves in nanoparticle synthesis: fundamentals and applications. Wiley-VCH Verlag GmbH and Co, Weinheim, 352 p.
48. 2013: Sunlight-driven reduction of silver ions by natural organic matter: formation and transformation of silver nanoparticles. Environ Sci Technol 47: 7713-7721
< WC, Stuart B, Howes R, Zepp RG https://doi.org/10.1021/es400802w>
49. 2014: Particle-specific toxic effects of differently shaped zinc oxide nanoparticles to zebrafish embryos (Danio rerio). Environ Toxicol Chem 33: 2859-2868
< J, Vijver MG, Richardson MK, Ahmad F, Peijnenburg WJGM https://doi.org/10.1002/etc.2758>
50. 2013: Transformation of silver nanoparticles in fresh, aged, and incinerated biosolids. Water Res 47: 3878-3886
< CA, Harmon S, Silva RG, Miller BW, Scheckel KG, Luxton TP, Schupp D, Panguluri S https://doi.org/10.1016/j.watres.2012.12.041>
51. International Organization for Standardization 2011: Nanotechnologies–Vocabulary–Part 4: Nanostructured materials. International (ISO Standard 80004-4). ISO copyright office, Geneva, 7 p.
52. 2016: Surface capping and size-dependent toxicity of gold nanoparticles on different trophic levels. Environ Sci Pollut Res 23: 4844-4858
< V, Manivannan J, De A, Subhabrata P, Rajdeep R, Johnson JB, Kundu R, Chandrasekaran N, Mukherjee A, Mukherjee A https://doi.org/10.1007/s11356-015-5683-0>
53. 2014: Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. PLoS One 9: 102-108
< A, Kurvet I, Kasemets K, Blinova I, Aruoja V, Suppi S, Vija H, Käkinen A, Titma T, Heinlaan M, Visnapuu M, Koller D, Kisand V, Kahru A, Quigg A https://doi.org/10.1371/journal.pone.0102108>
54. 2019: The first comprehensive safety study of Magnéli phase titanium suboxides reveals no acute environmental hazard. Environ SciNano 6: 1131-1139
Kokalj A, Novak S, Talaber I, Kononenko V, Bizjak Mali L, Vodovnik M, Žegura B, Eleršek T, Kalčikova G, Žgajnar Gotvajn A, Kralj S, Makovec D, Caloudova H, Drobne D
55. 2015: Titanium dioxide nanoparticles enhance mortality of fish exposed to bacterial pathogens. Environ Pollut 203: 153-164
< B, Whitley EM, Kimura K, Crumpton A, Palić D https://doi.org/10.1016/j.envpol.2015.04.003>
56. 2013: Fate and transformation of silver nanoparticles in urban wastewater systems. Water Res 47: 3866-3877
< R, Voegelin A, Ort C https://doi.org/10.1016/j.watres.2012.11.060>
57. 2015: Toxicity of silver nanoparticles in fish: a critical review. JBES 6: 211-227
MS, Jabeen F, Qureshi NA, Asghar MS, Shakeel M, Noureen A
58. 2019: Algae-based metallic nanoparticles: Synthesis, characterization and applications. J Microbiol Methods 163: 105656
< P, Kaur A, Goyal D https://doi.org/10.1016/j.mimet.2019.105656>
59. 2012: Applications of nanomaterials in agricultural production and crop protection: A review. J Crop Prot 35: 64-70
< LR, Sankaran S, Maja JM, Ehsani R, Schuster EW https://doi.org/10.1016/j.cropro.2012.01.007>
60. 2008: Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27: 1825-1851
< SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR https://doi.org/10.1897/08-090.1>
61. 2020: Interaction of radionuclide 131I and cadmium chloride in an alternative bioassay with Artemia franciscana evaluated by a digital record. Acta Vet Brno 89: 413-420
< L, Dvořák P, Beňová K, Doležalová J, Tomko M, Špalková M https://doi.org/10.2754/avb202089040413>
62. 2016: The current state of the art in research on engineered nanomaterials and terrestrial environments: Different-scale approaches. Environ Res 151: 368-382
< JI, An YJ https://doi.org/10.1016/j.envres.2016.08.005>
63. 2012: Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms. Trends Analyt Chem 32: 40-59
< A, Fernández A, Blasco J https://doi.org/10.1016/j.trac.2011.09.007>
64. 2007: In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 1: 133-143
< KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu X-HN https://doi.org/10.1021/nn700048y>
65. 2016: Influences of water properties on the aggregation and deposition of engineered titanium dioxide nanoparticles in natural waters. Environ Pollut 219: 132-138
< L, Sillanpää M, Risto M https://doi.org/10.1016/j.envpol.2016.09.080>
66. 2005: TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol 39: 1338-1345
< Y, Majetich SA, Tilton RD, Sholl DS, Lowry GV https://doi.org/10.1021/es049195r>
67. 2013: The biophysicochemical interactions at the interfaces between nanoparticles and aquatic organisms: adsorption and internalization. Environ Sci Processes Impacts 15: 145-160
< S, Lin D https://doi.org/10.1039/C2EM30637A>
68. 2015: Probabilistic modelling of prospective environmental concentrations of gold nanoparticles from medical applications as a basis for risk assessment. J Nanobiotechnology 13: 1-14
< I, Sun TY, Clark JRA, Dobson PJ, Hungerbuehler K, Owen R, Nowack B, Lead J https://doi.org/10.1186/s12951-015-0150-0>
69. 2013: Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Res Int 2013: 1-15
< A, Wang L, Rojanasakul Y https://doi.org/10.1155/2013/942916>
70. 2013: Assessment of nanosilver toxicity during zebrafish (Danio rerio) development. Chemosphere 92: 59-66
< A, Dupuis L, Taylor J, Eisa-Beygi S, Strek L, Trudeau VL, Moon TW https://doi.org/10.1016/j.chemosphere.2013.02.060>
71. 2016: Effect of media composition on bioavailability and toxicity of silver and silver nanoparticles in fish intestinal cells (RTgutGC). Nanotoxicol 10: 1526-1534
< M, Schirmer K https://doi.org/10.1080/17435390.2016.1241908>
72. 2016: Effects of realistic concentrations of TiO2 and ZnO nanoparticles in Prochilodus lineatus juvenile fish. Environ Sci Pollut Res 23: 5179-5188
< RR, Damaso da Silveira ALR, de Jesus IP, Grötzner SR, Voigt CL, Campos SX, Garcia JRE, Randi MAF, de Oliveira Ribeiro CA, Filipak Neto F https://doi.org/10.1007/s11356-015-5732-8>
73. Monteiro-Riviere NA, Tran CL 2007: Nanotoxicology characterization, dosing and health effects. Informa Healthcare, New York, 425 p.
74. 1997: The mechanism of acute silver nitrate toxicity in freshwater rainbow trout (Oncorhynchus mykiss) is inhibition of gill Na+ and Cl-1 transport. Aquat Toxicol 38: 145-163
< IJ, Henry RP, Wood CM https://doi.org/10.1016/S0166-445X(96)00835-1>
75. 2014: Uptake and bioaccumulation of titanium – and silver-nanoparticles in aquatic ecosystems. Mol Cell Toxicol 10: 9-17
< D-H, Lee, B-C, Eom I-C, Kim P, Yeo M-K https://doi.org/10.1007/s13273-014-0002-2>
76. 2006: Toxic potential of materials at the nanolevel. Science 311: 622-627
< A, Xia T, Mädler N, Li N https://doi.org/10.1126/science.1114397>
77. 2011: 120 Years of nanosilver history: Implications for policy makers. Environ Sci Technol 45: 1177-1183
< B, Krug HF, Height M https://doi.org/10.1021/es103316q>
78. 2014: Aggregation behaviour of gold nanoparticles in saline aqueous media. J Nanopart Res, 16: 2376
< R, Cifre JGH, Espín VF, Collado-González M, Bańos FGD, de la Torre JG https://doi.org/10.1007/s11051-014-2376-4>
79. 2013: Stability of citrate-capped silver nanoparticles in exposure media and their effects on the development of embryonic zebrafish (Danio rerio). Arch Pharm Res 36: 125-133
< K, Tuttle G, Sinche F, Harper SL https://doi.org/10.1007/s12272-013-0005-x>
80. 2018: Comparative analysis of the toxicity of gold nanoparticles in zebrafish. J Appl Toxicol 38: 1153-1162
< S, Zhang Y, Tohari AM, Gu P, Reilly J, Chen Y, Shu X https://doi.org/10.1002/jat.3628>
81. 2018: Detection of nanoparticles in Dutch surface waters. Sci Total Environ 621: 210-218
< RJB, van Bemmel G, Milani NBL, den Hertog GCT, Undas AK, van der Lee M, Bouwmeester H https://doi.org/10.1016/j.scitotenv.2017.11.238>
82. 2012: Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res 14: 1109-1120
< F, Gottschalk F, Seeger S, Nowack B https://doi.org/10.1007/s11051-012-1109-9>
83. 2016: Silver nanoparticles – a material of the future…? Open Chem J 14: 76-91
< J, Banach M https://doi.org/10.1515/chem-2016-0005>
84. 2009: Toxicity and environmental risks of nanomaterials: Challenges and future needs. J Environ Sci Health, Part C 27: 1-35
< PC, Yu H, Fu PP https://doi.org/10.1080/10590500802708267>
85. 2014: Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Sci Total Environ 466-467: 232-241
< F, Gallego-Urrea JA, Jurkschat K, Crossley A, Hassellöv M, Taylor C, Soares AMVM, Loureiro S https://doi.org/10.1016/j.scitotenv.2013.06.101>
86. 2011: Metals as a cause of oxidative stress in fish: a review. Vet Med 56: 537-546
< M, Modra H, Slaninova A, Svobodova Z https://doi.org/10.17221/4272-VETMED>
87. 2016: Recent progress in applications of nanoparticles in fish medicine: A review. Nanomedicine 12: 701-710
< M, Saleh M, El-Mahdy M, El-Matbouli M https://doi.org/10.1016/j.nano.2015.11.005>
88. 2015: Understanding the fate and biological effects of Ag- and TiO2-nanoparticles in the environment: The quest for advanced analytics and interdisciplinary concepts. Sci Total Environ 535: 3-19.
< GE, Philippe A, Bundschuh M, Metreveli G, Klitzke S, Rakcheev D, Grün A, Kumahor SK, Kühn M, Baumann T, Lang F, Manz W, Schulz R, Vogel H-J https://doi.org/10.1016/j.scitotenv.2014.10.035>
89. 2020: A review on biogenic synthesis, applications and toxicity aspects of zinc oxide nanoparticles. EXCLI J 19: 1325-1340
R, Garg R, Kumari A
90. 2013: Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 10: 15-48
< H, Magaye R, Castranova V, Zhao J https://doi.org/10.1186/1743-8977-10-15>
91. 2016: Adsorption characteristics of nano-TiO2 onto zebrafish embryos and its impacts on egg hatching. Chemosphere 154: 109-117
< YJ, Su CC, Chen CW, Dong CD, Liu WS, Huang CP https://doi.org/10.1016/j.chemosphere.2016.03.061>
92. 2016: Aquatic ecotoxicity testing of nanoparticles – The quest to disclose nanoparticle effects. Angew Chem 55: 15224-15239
< LM, Sřrensen SN, Hartmann NB, Hjorth R, Hansen SF, Baun A https://doi.org/10.1002/anie.201604964>
93. 2016: Differential organ toxicity in the adult zebra fish following exposure to acute sub-lethal doses of 10 nm silver nanoparticles. Front Nanosci Nanotech 2: 114-120
< JL, Elrod N, Sadoski DK, Maurer E, Braydich-Stolle LK, Brady J, Hussain S https://doi.org/10.15761/FNN.1000119>
94. 2018: Review of the toxicological effects of silver nanomaterials on the model aquatic organism Danio rerio. Front Nanosci Nanotech 4: 1-4
< JL https://doi.org/10.15761/FNN.1000172>
95. 2015: Industrial applications of nanoparticles. Chem Soc Rev 44: 5793-5805
< WJ, Stoessel PR, Wohlleben W, Hafner A https://doi.org/10.1039/C4CS00362D>
96. 2014: Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut 185: 69-76
< TY, Gottschalk F, Hungerbühler K, Nowack B https://doi.org/10.1016/j.envpol.2013.10.004>
97. 2016: Dynamic probabilistic modeling of environmental emissions of engineered nanomaterials. Environ Sci Technol 50: 4701-4711
< TY, Bornhöft NA, Hungerbühler K, Nowack B https://doi.org/10.1021/acs.est.5b05828>
98. Sungur Ş 2020: Titanium Dioxide Nanoparticles. In: Kharissova O, Martínez L, Kharisov B (Ed.): Handbook of nanomaterials and nanocomposites for energy and environmental applications. Springer Cham, Switzerland, pp. 1-18
99. 2020: A multiannual survey of cadmium content in pig tissues collected in the Czech Republic during the years 2015–2019. Acta Vet Brno 89: 349-355
< M, Drápal J, Haruštiaková D, Svobodová Z https://doi.org/10.2754/avb202089040349>
100. 2007: Topical delivery of silver nanoparticles promotes wound healing. Chem Med Chem 2: 129-136
< J, Wong KKY, Ho C-M, Lok C-N, Yu W-Y, Che C-M, Chiu J-F, Tam PKH https://doi.org/10.1002/cmdc.200600171>
101. 2020: Engineered nanomaterials in the environment: bioaccumulation, biomagnification and biotransformation. Environ Chem Lett 18: 1073-1083
< MN, Desai F, Asmatulu E https://doi.org/10.1007/s10311-019-00947-0>
102. 2019: The role of thiols in antioxidant systems. Free Radic Biol Med 140: 14-27
< K, Jakob U https://doi.org/10.1016/j.freeradbiomed.2019.05.035>
103. 2020: Are TiO2 nanoparticles safe for photocatalysis in aqueous media? Nanoscale Adv 2: 4951-4960
< A, Sárria MP, Rodriguez-Lorenzo L, Hotza D, Espińa B, Gómez González SY https://doi.org/10.1039/D0NA00584C>
104. 2013: Molecular mechanisms of toxicity of silver nanoparticles in zebrafish embryos. Environ Sci Technol 47: 8005-8014
< R, Lange A, Moorhouse A, Paszkiewicz K, Ball K, Johnston BD, De-Bastos E, Booth T, Tyler CR, Santos EM https://doi.org/10.1021/es401758d>
105. 2011: Disruption of zebrafish (Danio rerio) reproduction upon chronic exposure to TiO2 nanoparticles. Chemosphere 83: 461-467
< J, Zhu X, Zhang X, Zhao Z, Liu H, George R, Wilson-Rawls J, Chang Y, Chen, Y https://doi.org/10.1016/j.chemosphere.2010.12.069>
106. 2008: How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? Toxicol Sci 101: 183-185
< DB https://doi.org/10.1093/toxsci/kfm279>
107. 2009: Nano-silver – a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicol 3: 109-138
< SWP, Peijnenburg WJGM, Herberts CA, Hagens WI, Oomen AG, Heugens EHW, Roszek B, Bisschops J, Gosens I, Van De Meent D, Dekkers S, De Jong WH, Van Zijverden M, Sips AJAM, Geertsma RE https://doi.org/10.1080/17435390902725914>
108. 2016: The effect of silver nanoparticles on zebrafish embryonic development and toxicology. Artif Cells Nanomed Biotechnol 44: 1116-1121
G, Liu T, Wang Z, Hou Y, Dong L, Zhu J, Qi J
109. 2015: Silver nanoparticles affect the neural development of zebrafish embryos. J Appl Toxicol 35: 1481-1492
< Q, Rotchell JM, Cheng J, Yi J, Zhang Q https://doi.org/10.1002/jat.3164>
110. 2020: Recent advances in metal decorated nanomaterials and their various biological applications: A review. Front Chem 8: 341
< AA, Ahmad H, Parveen T, Ahmad A, Oves M, Ismail IMI, Quari HA, Umar K, Mohamad IMN https://doi.org/10.3389/fchem.2020.00341>
111. 2008: Effects of nanometer sized silver materials on biological toxicity during zebrafish embryogenesis. Bull Korean Chem Soc 29: 1179-1184
M-K, Kang M
112. 2014: Toxicity, bioaccumulation and biomagnification of silver nanoparticles in green algae (Chlorella sp.), water flea (Moina macrocopa), blood worm (Chironomus spp.) and silver barb (Barbonymus gonionotus). Chem Speciat Bioavailab 26: 257-265
< M, Chaichana R, Satapanajaru T https://doi.org/10.3184/095422914X14144332205573>
113. 2016: Silver nanoparticle – protein interactions in intact rainbow trout gill cells. Environ Sci Nano 3: 1174-1185
< Y, Behra R, Sigg L, Suter M J-F, Pillai S, Schirmer K https://doi.org/10.1039/C6EN00119J>
114. 2016: Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 17: 1534
< X-F, Liu Z-G, Shen W, Gurunathan S https://doi.org/10.3390/ijms17091534>
115. 2009: Minute synthesis of extremely stable gold nanoparticles. Nanotechnology 20: 1-10
M, Wang B, Rozynek Z, Xie Z, Fossum JO, Yu X, Raaen S
116. 2010: Trophic transfer of TiO2 nanoparticles from daphnia to zebrafish in a simplified freshwater food chain. Chemosphere 79: 928-933
< X, Wang J, Zhang X, Chang Y, Chen Y https://doi.org/10.1016/j.chemosphere.2010.03.022>
117. 2011: TiO2 nanoparticles in the marine environment: Impact on the toxicity of tributyltin to abalone (Haliotis diversicolor supertexta) embryos. Environ Sci Technol 45: 3753-3758
< XS, Zhou J, Cai ZH https://doi.org/10.1021/es103779h>