Acta Vet. Brno 2021, 90: 331-347

https://doi.org/10.2754/avb202190030331

A review of the effects of metallic nanoparticles on fish

Hana Čaloudová, Jana Čaloudová, Zdeňka Svobodová

University of Veterinary Sciences Brno, Faculty of Veterinary Hygiene and Ecology, Department of Animal Protection and Welfare and Public Veterinary Medicine, Brno, Czech Republic

Received January 16, 2021
Accepted August 31, 2021

References

1. Angel BM, Batley GE, Jarolimek CV, Rogers NJ 2013: The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems. Chemosphere 93: 359-365 <https://doi.org/10.1016/j.chemosphere.2013.04.096>
2. Asharani PV, Lian Wu Y, Gong Z, Valiyaveettil S 2008: Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19: 1-7 <https://doi.org/10.1088/0957-4484/19/25/255102>
3. Ates M, Arslan Z, Demir V, Daniels J, Farah IO 2015: Accumulation and toxicity of CuO and ZnO nanoparticles through waterborne and dietary exposure of goldfish (Carassius auratus). Environ Toxicol 30: 119-128 <https://doi.org/10.1002/tox.22002>
4. Azizi-Lalabadi M, Ehsani A, Divband B, Alizadeh-Sani M 2019: Antimicrobial activity of titanium dioxide and zinc oxide nanoparticles supported in 4A zeolite and evaluation the morphological characteristic. Sci Rep 9: 17439 <https://doi.org/10.1038/s41598-019-54025-0>
5. Bar-Ilan O, Albrecht RM, Fako VE, Furgeson DY 2009: Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small 5: 1897-1910 <https://doi.org/10.1002/smll.200801716>
6. Barreto A, Luis LG, Pinto E, Almeida A, Paíga P, Santos LHMLM, Delerue-Matos C, Trindade T, Soares AMVM, Hylland K, Loureiro S, Oliveira M 2019: Genotoxicity of gold nanoparticles in the gilthead seabream (Sparus aurata) after single exposure and combined with the pharmaceutical gemfibrozil. Chemosphere 220: 11-19 <https://doi.org/10.1016/j.chemosphere.2018.12.090>
7. Batley GE, Kirby JK, McLaughlin MJ 2013: Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc Chem Res 46: 854-862 <https://doi.org/10.1021/ar2003368>
8. Bilberg K, Hovgaard MB, Besenbacher F, Baatrup E 2012: In vivo toxicity of silver nanoparticles and silver ions in zebrafish (Danio rerio). J Toxicol 2012: 1-9 <https://doi.org/10.1155/2012/293784>
9. Binnig G, Rohrer H, Gerber C, Weibel E 1982: Surface studies by scanning tunneling microscopy. Phys Rev Lett 49: 57-61 <https://doi.org/10.1103/PhysRevLett.49.57>
10. Botha TL, Brand SJ, Ikenaka Y, Nakayama SMM, Ishizuka M, Wepener V 2019: How toxic is a non-toxic nanomaterial: Behaviour as an indicator of effect in Danio rerio exposed to nanogold. Aquat Toxicol 215: 1-10 <https://doi.org/10.1016/j.aquatox.2019.105287>
11. Caloudova H, Hodkovicova N, Sehonova P, Blahova J, Marsalek B, Panacek A, Svobodova Z 2018: The effect of silver nanoparticles and silver ions on zebrafish embryos (Danio rerio). Neuro Endocrinol Lett 39: 299-304
12. Carmo TLL, Siqueira PR, Azevedo VC, Tavares D, Pesenti EC, Cestari MM, Martinez CBR, Fernandes MN 2019: Overview of the toxic effects of titanium dioxide nanoparticles in blood, liver, muscles, and brain of a Neotropical detritivorous fish. Environ Toxicol 34: 457-468 <https://doi.org/10.1002/tox.22699>
13. Chandra P, Singh J, Srivastava A, Goyal RN, Shim YB 2013: Gold nanoparticles and nanocomposites in clinical diagnostics using electrochemical methods. J Nanoparticles 2013: 1-12 <https://doi.org/10.1155/2013/535901>
14. Chen J, Li H, Han X, Wei X 2015: Transmission and accumulation of nano-TiO2 in a 2-step food chain (Scenedesmus obliquus to Daphnia magna). Bull Environ Contam Toxicol 95: 145-149 <https://doi.org/10.1007/s00128-015-1580-y>
15. Chen T-H, Lin C-Y, Tseng M-C 2011: Behavioral effects of titanium dioxide nanoparticles on larval zebrafish (Danio rerio). Mar Pollut Bull 63: 303-308 <https://doi.org/10.1016/j.marpolbul.2011.04.017>
16. Christen V, Capelle M, Fent K 2013: Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish. Toxicol Appl Pharmacol 272: 519-528 <https://doi.org/10.1016/j.taap.2013.06.011>
17. Chupani L, Barta J, Zuskova E 2019. Effects of food-borne ZnO nanoparticles on intestinal microbiota of common carp (Cyprinus carpio L.). Environ Sci Pollut Res 26: 25869-25873 <https://doi.org/10.1007/s11356-019-05616-x>
18. Chupani L, Niksirat H, Velíšek J, Stará A, Hradilová Š, Kolařík J, Panáček A, Zusková E 2018a: Chronic dietary toxicity of zinc oxide nanoparticles in common carp (Cyprinus carpio L.): Tissue accumulation and physiological responses. Ecotoxicol Environ Saf 147: 110-116 <https://doi.org/10.1016/j.ecoenv.2017.08.024>
19. Chupani L, Niksirat H, Lünsmann V, Haange SB, Von Bergen M, Jehmlich N, Zuskova E 2018b: Insight into the modulation of intestinal proteome of juvenile common carp (Cyprinus carpio L.) after dietary exposure to ZnO nanoparticles. Sci Total Environ 613-614: 62-71 <https://doi.org/10.1016/j.scitotenv.2017.08.129>
20. Chupani L, Zusková E, Niksirat H, Panáček A, Lünsmann V, Haange S-B, von Bergen M, Jehmlich N 2017: Effects of chronic dietary exposure of zinc oxide nanoparticles on the serum protein profile of juvenile common carp (Cyprinus carpio L.). Sci Total Environ 579: 1504-1511 <https://doi.org/10.1016/j.scitotenv.2016.11.154>
21. Clemente Z, Castro VL, Feitosa LO, Lima R, Jonsson CM, Maia AHN, Fraceto LF 2013: Fish exposure to nano-TiO2 under different experimental conditions: Methodological aspects for nanoecotoxicology investigations. Sci Total Environ 463-464: 647-656 <https://doi.org/10.1016/j.scitotenv.2013.06.022>
22. Coello WF, Khan MAQ 1996: Protection against heavy metal toxicity by mucus and scales in fish. Arch Environ Contam Toxicol 30: 319-326 <https://doi.org/10.1007/BF00212289>
23. Dedeh A, Ciutat A, Treguer-Delapierre M, Bourdineaud J-P 2014: Impact of gold nanoparticles on zebrafish exposed to a spiked sediment. Nanotoxicol 9: 71-80 <https://doi.org/10.3109/17435390.2014.889238>
24. Deng R, Lin D, Zhu L, Majumdar S, White JC, Gardea-Torresde JL, Xing B 2017: Nanoparticle interactions with co-existing contaminants: joint toxicity, bioaccumulation and risk. Nanotoxicol 11: 591-612 <https://doi.org/10.1080/17435390.2017.1343404>
25. Devi GP, Ahmed KBA, Varsha MKNS, Shrijha BS, Lal KKS, Anbazhagan V, Thiagarajan R 2015: Sulfidation of silver nanoparticle reduces its toxicity in zebrafish. Aquat Toxicol 158: 149-156 <https://doi.org/10.1016/j.aquatox.2014.11.007>
26. Diniz MS, De Matos APA, Lourenço J, Castro L, Peres I, Mendonça E, Picado A 2013: Liver alterations in two freshwater fish species (Carassius auratus and Danio rerio) following exposure to different TiO2 nanoparticle concentrations. Microsc Microanal 19: 1131-1140 <https://doi.org/10.1017/S1431927613013238>
27. European Commission: Opininon on nanosilver: safety, health and environmental effects and role in antimicrobial resistance. Publications Office of the EU. Available at: https://op.europa.eu/en/publication-detail/-/publication/0dde6746-59a2-419d-91d8-fe2d14a2fec0/language-en. Last modified June 11, 2014. Accessed December 1, 2020.
28. Fard JK, Jafari S, Eghbal MA 2015: A review of molecular mechanisms involved in toxicity of nanoparticles. Adv Pharm Bull 5: 447-454 <https://doi.org/10.15171/apb.2015.061>
29. Federici G, Shaw B, Handy R 2007: Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): Gill injury, oxidative stress, and other physiological effects. Aquat Toxicol 84: 415-430 <https://doi.org/10.1016/j.aquatox.2007.07.009>
30. Fu PP, Xia Q, Hwang H-M, Ray PC, Yu H 2014: Mechanisms of nanotoxicity: Generation of reactive oxygen species. J Food Drug Anal 22: 64-75 <https://doi.org/10.1016/j.jfda.2014.01.005>
31. Gaiser BK, Fernandes TF, Jepson MA, Lead JR, Tyler CR, Baalousha M, Biswas A, Britton GJ, Cole PA, Johnston BD, Ju-Nam Y, Rosenkranz P, Scown TM, Stone V 2011: Interspecies comparisons on the uptake and toxicity of silver and cerium dioxide nanoparticles. Environ Toxicol Chem 31: 144-154 <https://doi.org/10.1002/etc.703>
32. García-Cambero JP, Núńez García M, Lopéz GD, Herranz AL, Cuevas L, Pérez-Pastrana E, Cuadal JS, Castelltort MR, Calvo AC 2013: Converging hazard assesment of gold nanoparticles to aquatic organisms. Chemposphere 93: 1194-1200 <https://doi.org/10.1016/j.chemosphere.2013.06.074>
33. Garcia-Reyero N, Thornton C, Hawkins AD, Escalon L, Kennedy AJ, Steevens JA, Willett KL 2015: Assessing the exposure to nanosilver and silver nitrate on fathead minnow gill gene expression and mucus production. Environ Nanotechnol Monit Manag 4: 58-66
34. Geertsma RE, Park MVDZ, Puts CF, Roszek B, Van der Stijl R, De Jong WH 2015: Nanotechnologies in medical devices. National Institute for Public Health and the Environment, Bilthoven, 83 p.
35. Geffroy B, Ladhar C, Cambier S, Treguer-Delapierre M, Brčthes D, Bourdineaud J-P 2011: Impact of dietary gold nanoparticles in zebrafish at very low contamination pressure: The role of size, concentration and exposure time. Nanotoxicol 6: 144-160 <https://doi.org/10.3109/17435390.2011.562328>
36. Global Industry Analysts, Inc. 2020: Metal Nanoparticles - Global Market Trajectory & Analytics. Global Industry Analysts, Inc, Dublin, 187 p.
37. Gottschalk F, Lassen C, Kjoelholt J, Christensen F, Nowack B 2015: Modeling flows and concentrations of nine engineered nanomaterials in the Danish environment. International Int J Environ Res Public Health 12: 5581-5602 <https://doi.org/10.3390/ijerph120505581>
38. Gottschalk F, Sonderer T, Scholz RW, Nowack B 2009: Modelled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43: 9216-9222 <https://doi.org/10.1021/es9015553>
39. Grand View Research, Inc. 2020: Nanomaterials Market Size, Share & Trends Analysis Report By Product (Carbon Nanotubes, Titanium Dioxide), By Application (Medical, Electronics, Paints & Coatings), By Region, And Segment Forecasts, 2020 - 2027. Grand View Research, Inc., San Francisco, 113 p.
40. Griffitt RJ, Hyndman K, Denslow ND, Barber DS 2009: Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol Sci 107: 404-415 <https://doi.org/10.1093/toxsci/kfn256>
41. Griffitt RJ, Luo J, Gao J, Bonzongo J-C, Barber DS 2008: Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27: 1972-1978 <https://doi.org/10.1897/08-002.1>
42. Gurunathan S 2015: Biologically synthesized silver nanoparticles enhances antibiotic activity against Gram-negative bacteria. J Ind Eng Chem 29: 217-226 <https://doi.org/10.1016/j.jiec.2015.04.005>
43. Handy RD, Henry TB, Scown TM, Johnston BD, Tyler CR 2008: Manufactured nanoparticles: their uptake and effects on fish – a mechanistic analysis. Ecotoxicology 17: 396-409 <https://doi.org/10.1007/s10646-008-0205-1>
44. Hawkins AD, Thornton C, Kennedy AJ, Bu K, Cizdziel J, Jones BW, Steevens JA, Willett KL 2015: Gill histopathologies following exposure to nanosilver or silver nitrate. J Toxicol Environ Health A 78: 301-315 <https://doi.org/10.1080/15287394.2014.971386>
45. Hlavkova D, Caloudova H, Palikova P, Kopel P, Plhalova L, Beklova M, Havelkova B 2020: Effect of gold nanoparticles and ions exposure on the aquatic organisms. Bull Environ Contam Toxicol 105: 530-537 <https://doi.org/10.1007/s00128-020-02988-6>
46. Hogstrand C, Wood CM 1998: Toward a better understanding of the bioavailability, physiology, and toxicity of silver in fish: Implications for water quality criteria. Environ Toxicol Chem 17: 547-561 <https://doi.org/10.1002/etc.5620170405>
47. Horikoshi S, Serpone N 2013: Microwaves in nanoparticle synthesis: fundamentals and applications. Wiley-VCH Verlag GmbH and Co, Weinheim, 352 p.
48. Hou WC, Stuart B, Howes R, Zepp RG 2013: Sunlight-driven reduction of silver ions by natural organic matter: formation and transformation of silver nanoparticles. Environ Sci Technol 47: 7713-7721 <https://doi.org/10.1021/es400802w>
49. Hua J, Vijver MG, Richardson MK, Ahmad F, Peijnenburg WJGM 2014: Particle-specific toxic effects of differently shaped zinc oxide nanoparticles to zebrafish embryos (Danio rerio). Environ Toxicol Chem 33: 2859-2868 <https://doi.org/10.1002/etc.2758>
50. Impellitteri CA, Harmon S, Silva RG, Miller BW, Scheckel KG, Luxton TP, Schupp D, Panguluri S 2013: Transformation of silver nanoparticles in fresh, aged, and incinerated biosolids. Water Res 47: 3878-3886 <https://doi.org/10.1016/j.watres.2012.12.041>
51. International Organization for Standardization 2011: Nanotechnologies–Vocabulary–Part 4: Nanostructured materials. International (ISO Standard 80004-4). ISO copyright office, Geneva, 7 p.
52. Iswarya V, Manivannan J, De A, Subhabrata P, Rajdeep R, Johnson JB, Kundu R, Chandrasekaran N, Mukherjee A, Mukherjee A 2016: Surface capping and size-dependent toxicity of gold nanoparticles on different trophic levels. Environ Sci Pollut Res 23: 4844-4858 <https://doi.org/10.1007/s11356-015-5683-0>
53. Ivask A, Kurvet I, Kasemets K, Blinova I, Aruoja V, Suppi S, Vija H, Käkinen A, Titma T, Heinlaan M, Visnapuu M, Koller D, Kisand V, Kahru A, Quigg A 2014: Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. PLoS One 9: 102-108 <https://doi.org/10.1371/journal.pone.0102108>
54. Jemec Kokalj A, Novak S, Talaber I, Kononenko V, Bizjak Mali L, Vodovnik M, Žegura B, Eleršek T, Kalčikova G, Žgajnar Gotvajn A, Kralj S, Makovec D, Caloudova H, Drobne D 2019: The first comprehensive safety study of Magnéli phase titanium suboxides reveals no acute environmental hazard. Environ SciNano 6: 1131-1139
55. Jovanović B, Whitley EM, Kimura K, Crumpton A, Palić D 2015: Titanium dioxide nanoparticles enhance mortality of fish exposed to bacterial pathogens. Environ Pollut 203: 153-164 <https://doi.org/10.1016/j.envpol.2015.04.003>
56. Kaegi R, Voegelin A, Ort C 2013: Fate and transformation of silver nanoparticles in urban wastewater systems. Water Res 47: 3866-3877 <https://doi.org/10.1016/j.watres.2012.11.060>
57. Khan MS, Jabeen F, Qureshi NA, Asghar MS, Shakeel M, Noureen A 2015: Toxicity of silver nanoparticles in fish: a critical review. JBES 6: 211-227
58. Khanna P, Kaur A, Goyal D 2019: Algae-based metallic nanoparticles: Synthesis, characterization and applications. J Microbiol Methods 163: 105656 <https://doi.org/10.1016/j.mimet.2019.105656>
59. Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW 2012: Applications of nanomaterials in agricultural production and crop protection: A review. J Crop Prot 35: 64-70 <https://doi.org/10.1016/j.cropro.2012.01.007>
60. Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR 2008: Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27: 1825-1851 <https://doi.org/10.1897/08-090.1>
61. Kovářík L, Dvořák P, Beňová K, Doležalová J, Tomko M, Špalková M 2020: Interaction of radionuclide 131I and cadmium chloride in an alternative bioassay with Artemia franciscana evaluated by a digital record. Acta Vet Brno 89: 413-420 <https://doi.org/10.2754/avb202089040413>
62. Kwak JI, An YJ 2016: The current state of the art in research on engineered nanomaterials and terrestrial environments: Different-scale approaches. Environ Res 151: 368-382 <https://doi.org/10.1016/j.envres.2016.08.005>
63. Lapresta-Fernández A, Fernández A, Blasco J 2012: Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms. Trends Analyt Chem 32: 40-59 <https://doi.org/10.1016/j.trac.2011.09.007>
64. Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu X-HN 2007: In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 1: 133-143 <https://doi.org/10.1021/nn700048y>
65. Li L, Sillanpää M, Risto M 2016: Influences of water properties on the aggregation and deposition of engineered titanium dioxide nanoparticles in natural waters. Environ Pollut 219: 132-138 <https://doi.org/10.1016/j.envpol.2016.09.080>
66. Liu Y, Majetich SA, Tilton RD, Sholl DS, Lowry GV 2005: TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol 39: 1338-1345 <https://doi.org/10.1021/es049195r>
67. Ma S, Lin D 2013: The biophysicochemical interactions at the interfaces between nanoparticles and aquatic organisms: adsorption and internalization. Environ Sci Processes Impacts 15: 145-160 <https://doi.org/10.1039/C2EM30637A>
68. Mahapatra I, Sun TY, Clark JRA, Dobson PJ, Hungerbuehler K, Owen R, Nowack B, Lead J 2015: Probabilistic modelling of prospective environmental concentrations of gold nanoparticles from medical applications as a basis for risk assessment. J Nanobiotechnology 13: 1-14 <https://doi.org/10.1186/s12951-015-0150-0>
69. Manke A, Wang L, Rojanasakul Y 2013: Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Res Int 2013: 1-15 <https://doi.org/10.1155/2013/942916>
70. Massarsky A, Dupuis L, Taylor J, Eisa-Beygi S, Strek L, Trudeau VL, Moon TW 2013: Assessment of nanosilver toxicity during zebrafish (Danio rerio) development. Chemosphere 92: 59-66 <https://doi.org/10.1016/j.chemosphere.2013.02.060>
71. Minghetti M, Schirmer K 2016: Effect of media composition on bioavailability and toxicity of silver and silver nanoparticles in fish intestinal cells (RTgutGC). Nanotoxicol 10: 1526-1534 <https://doi.org/10.1080/17435390.2016.1241908>
72. Miranda RR, Damaso da Silveira ALR, de Jesus IP, Grötzner SR, Voigt CL, Campos SX, Garcia JRE, Randi MAF, de Oliveira Ribeiro CA, Filipak Neto F 2016: Effects of realistic concentrations of TiO2 and ZnO nanoparticles in Prochilodus lineatus juvenile fish. Environ Sci Pollut Res 23: 5179-5188 <https://doi.org/10.1007/s11356-015-5732-8>
73. Monteiro-Riviere NA, Tran CL 2007: Nanotoxicology characterization, dosing and health effects. Informa Healthcare, New York, 425 p.
74. Morgan IJ, Henry RP, Wood CM 1997: The mechanism of acute silver nitrate toxicity in freshwater rainbow trout (Oncorhynchus mykiss) is inhibition of gill Na+ and Cl-1 transport. Aquat Toxicol 38: 145-163 <https://doi.org/10.1016/S0166-445X(96)00835-1>
75. Nam D-H, Lee, B-C, Eom I-C, Kim P, Yeo M-K 2014: Uptake and bioaccumulation of titanium – and silver-nanoparticles in aquatic ecosystems. Mol Cell Toxicol 10: 9-17 <https://doi.org/10.1007/s13273-014-0002-2>
76. Nel A, Xia T, Mädler N, Li N 2006: Toxic potential of materials at the nanolevel. Science 311: 622-627 <https://doi.org/10.1126/science.1114397>
77. Nowack B, Krug HF, Height M 2011: 120 Years of nanosilver history: Implications for policy makers. Environ Sci Technol 45: 1177-1183 <https://doi.org/10.1021/es103316q>
78. Pamies R, Cifre JGH, Espín VF, Collado-González M, Bańos FGD, de la Torre JG 2014: Aggregation behaviour of gold nanoparticles in saline aqueous media. J Nanopart Res, 16: 2376 <https://doi.org/10.1007/s11051-014-2376-4>
79. Park K, Tuttle G, Sinche F, Harper SL 2013: Stability of citrate-capped silver nanoparticles in exposure media and their effects on the development of embryonic zebrafish (Danio rerio). Arch Pharm Res 36: 125-133 <https://doi.org/10.1007/s12272-013-0005-x>
80. Patibandla S, Zhang Y, Tohari AM, Gu P, Reilly J, Chen Y, Shu X 2018: Comparative analysis of the toxicity of gold nanoparticles in zebrafish. J Appl Toxicol 38: 1153-1162 <https://doi.org/10.1002/jat.3628>
81. Peters RJB, van Bemmel G, Milani NBL, den Hertog GCT, Undas AK, van der Lee M, Bouwmeester H 2018: Detection of nanoparticles in Dutch surface waters. Sci Total Environ 621: 210-218 <https://doi.org/10.1016/j.scitotenv.2017.11.238>
82. Piccinno F, Gottschalk F, Seeger S, Nowack B 2012: Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res 14: 1109-1120 <https://doi.org/10.1007/s11051-012-1109-9>
83. Pulit-Prociak J, Banach M 2016: Silver nanoparticles – a material of the future…? Open Chem J 14: 76-91 <https://doi.org/10.1515/chem-2016-0005>
84. Ray PC, Yu H, Fu PP 2009: Toxicity and environmental risks of nanomaterials: Challenges and future needs. J Environ Sci Health, Part C 27: 1-35 <https://doi.org/10.1080/10590500802708267>
85. Ribeiro F, Gallego-Urrea JA, Jurkschat K, Crossley A, Hassellöv M, Taylor C, Soares AMVM, Loureiro S 2014: Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Sci Total Environ 466-467: 232-241 <https://doi.org/10.1016/j.scitotenv.2013.06.101>
86. Sevcikova M, Modra H, Slaninova A, Svobodova Z 2011: Metals as a cause of oxidative stress in fish: a review. Vet Med 56: 537-546 <https://doi.org/10.17221/4272-VETMED>
87. Shaalan M, Saleh M, El-Mahdy M, El-Matbouli M 2016: Recent progress in applications of nanoparticles in fish medicine: A review. Nanomedicine 12: 701-710 <https://doi.org/10.1016/j.nano.2015.11.005>
88. Schaumann GE, Philippe A, Bundschuh M, Metreveli G, Klitzke S, Rakcheev D, Grün A, Kumahor SK, Kühn M, Baumann T, Lang F, Manz W, Schulz R, Vogel H-J 2015: Understanding the fate and biological effects of Ag- and TiO2-nanoparticles in the environment: The quest for advanced analytics and interdisciplinary concepts. Sci Total Environ 535: 3-19. <https://doi.org/10.1016/j.scitotenv.2014.10.035>
89. Sharma R, Garg R, Kumari A 2020: A review on biogenic synthesis, applications and toxicity aspects of zinc oxide nanoparticles. EXCLI J 19: 1325-1340
90. Shi H, Magaye R, Castranova V, Zhao J 2013: Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 10: 15-48 <https://doi.org/10.1186/1743-8977-10-15>
91. Shih YJ, Su CC, Chen CW, Dong CD, Liu WS, Huang CP 2016: Adsorption characteristics of nano-TiO2 onto zebrafish embryos and its impacts on egg hatching. Chemosphere 154: 109-117 <https://doi.org/10.1016/j.chemosphere.2016.03.061>
92. Skjolding LM, Sřrensen SN, Hartmann NB, Hjorth R, Hansen SF, Baun A 2016: Aquatic ecotoxicity testing of nanoparticles – The quest to disclose nanoparticle effects. Angew Chem 55: 15224-15239 <https://doi.org/10.1002/anie.201604964>
93. Speshock JL, Elrod N, Sadoski DK, Maurer E, Braydich-Stolle LK, Brady J, Hussain S 2016: Differential organ toxicity in the adult zebra fish following exposure to acute sub-lethal doses of 10 nm silver nanoparticles. Front Nanosci Nanotech 2: 114-120 <https://doi.org/10.15761/FNN.1000119>
94. Speshock JL 2018: Review of the toxicological effects of silver nanomaterials on the model aquatic organism Danio rerio. Front Nanosci Nanotech 4: 1-4 <https://doi.org/10.15761/FNN.1000172>
95. Stark WJ, Stoessel PR, Wohlleben W, Hafner A 2015: Industrial applications of nanoparticles. Chem Soc Rev 44: 5793-5805 <https://doi.org/10.1039/C4CS00362D>
96. Sun TY, Gottschalk F, Hungerbühler K, Nowack B 2014: Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut 185: 69-76 <https://doi.org/10.1016/j.envpol.2013.10.004>
97. Sun, TY, Bornhöft NA, Hungerbühler K, Nowack B 2016: Dynamic probabilistic modeling of environmental emissions of engineered nanomaterials. Environ Sci Technol 50: 4701-4711 <https://doi.org/10.1021/acs.est.5b05828>
98. Sungur Ş 2020: Titanium Dioxide Nanoparticles. In: Kharissova O, Martínez L, Kharisov B (Ed.): Handbook of nanomaterials and nanocomposites for energy and environmental applications. Springer Cham, Switzerland, pp. 1-18
99. Svoboda M, Drápal J, Haruštiaková D, Svobodová Z 2020: A multiannual survey of cadmium content in pig tissues collected in the Czech Republic during the years 2015–2019. Acta Vet Brno 89: 349-355 <https://doi.org/10.2754/avb202089040349>
100. Tian J, Wong KKY, Ho C-M, Lok C-N, Yu W-Y, Che C-M, Chiu J-F, Tam PKH 2007: Topical delivery of silver nanoparticles promotes wound healing. Chem Med Chem 2: 129-136 <https://doi.org/10.1002/cmdc.200600171>
101. Uddin MN, Desai F, Asmatulu E 2020: Engineered nanomaterials in the environment: bioaccumulation, biomagnification and biotransformation. Environ Chem Lett 18: 1073-1083 <https://doi.org/10.1007/s10311-019-00947-0>
102. Ulrich K, Jakob U 2019: The role of thiols in antioxidant systems. Free Radic Biol Med 140: 14-27 <https://doi.org/10.1016/j.freeradbiomed.2019.05.035>
103. Valério A, Sárria MP, Rodriguez-Lorenzo L, Hotza D, Espińa B, Gómez González SY 2020: Are TiO2 nanoparticles safe for photocatalysis in aqueous media? Nanoscale Adv 2: 4951-4960 <https://doi.org/10.1039/D0NA00584C>
104. Van Aerle R, Lange A, Moorhouse A, Paszkiewicz K, Ball K, Johnston BD, De-Bastos E, Booth T, Tyler CR, Santos EM 2013: Molecular mechanisms of toxicity of silver nanoparticles in zebrafish embryos. Environ Sci Technol 47: 8005-8014 <https://doi.org/10.1021/es401758d>
105. Wang J, Zhu X, Zhang X, Zhao Z, Liu H, George R, Wilson-Rawls J, Chang Y, Chen, Y 2011: Disruption of zebrafish (Danio rerio) reproduction upon chronic exposure to TiO2 nanoparticles. Chemosphere 83: 461-467 <https://doi.org/10.1016/j.chemosphere.2010.12.069>
106. Warheit DB 2008: How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? Toxicol Sci 101: 183-185 <https://doi.org/10.1093/toxsci/kfm279>
107. Wijnhoven SWP, Peijnenburg WJGM, Herberts CA, Hagens WI, Oomen AG, Heugens EHW, Roszek B, Bisschops J, Gosens I, Van De Meent D, Dekkers S, De Jong WH, Van Zijverden M, Sips AJAM, Geertsma RE 2009: Nano-silver – a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicol 3: 109-138 <https://doi.org/10.1080/17435390902725914>
108. Xia G, Liu T, Wang Z, Hou Y, Dong L, Zhu J, Qi J 2016: The effect of silver nanoparticles on zebrafish embryonic development and toxicology. Artif Cells Nanomed Biotechnol 44: 1116-1121
109. Xin Q, Rotchell JM, Cheng J, Yi J, Zhang Q 2015: Silver nanoparticles affect the neural development of zebrafish embryos. J Appl Toxicol 35: 1481-1492 <https://doi.org/10.1002/jat.3164>
110. Yaqoob AA, Ahmad H, Parveen T, Ahmad A, Oves M, Ismail IMI, Quari HA, Umar K, Mohamad IMN 2020: Recent advances in metal decorated nanomaterials and their various biological applications: A review. Front Chem 8: 341 <https://doi.org/10.3389/fchem.2020.00341>
111. Yeo M-K, Kang M 2008: Effects of nanometer sized silver materials on biological toxicity during zebrafish embryogenesis. Bull Korean Chem Soc 29: 1179-1184
112. Yoo-iam M, Chaichana R, Satapanajaru T 2014: Toxicity, bioaccumulation and biomagnification of silver nanoparticles in green algae (Chlorella sp.), water flea (Moina macrocopa), blood worm (Chironomus spp.) and silver barb (Barbonymus gonionotus). Chem Speciat Bioavailab 26: 257-265 <https://doi.org/10.3184/095422914X14144332205573>
113. Yue Y, Behra R, Sigg L, Suter M J-F, Pillai S, Schirmer K 2016: Silver nanoparticle – protein interactions in intact rainbow trout gill cells. Environ Sci Nano 3: 1174-1185 <https://doi.org/10.1039/C6EN00119J>
114. Zhang X-F, Liu Z-G, Shen W, Gurunathan S 2016: Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 17: 1534 <https://doi.org/10.3390/ijms17091534>
115. Zhou M, Wang B, Rozynek Z, Xie Z, Fossum JO, Yu X, Raaen S 2009: Minute synthesis of extremely stable gold nanoparticles. Nanotechnology 20: 1-10
116. Zhu X, Wang J, Zhang X, Chang Y, Chen Y 2010: Trophic transfer of TiO2 nanoparticles from daphnia to zebrafish in a simplified freshwater food chain. Chemosphere 79: 928-933 <https://doi.org/10.1016/j.chemosphere.2010.03.022>
117. Zhu XS, Zhou J, Cai ZH 2011: TiO2 nanoparticles in the marine environment: Impact on the toxicity of tributyltin to abalone (Haliotis diversicolor supertexta) embryos. Environ Sci Technol 45: 3753-3758 <https://doi.org/10.1021/es103779h>
front cover
  • ISSN 0001-7213 (printed)
  • ISSN 1801-7576 (electronic)

Current issue

Archive