Acta Vet. Brno 2021, 90: 453-464

https://doi.org/10.2754/avb202190040453

Does aquatic sediment pollution result in contaminated food sources?

Josef Václavík, Pavla Sehonová, Zdeňka Svobodová

University of Veterinary Sciences Brno, Faculty of Veterinary Hygiene and Ecology, Department of Animal Protection and Welfare & Veterinary Public Health, Brno, Czech Republic

Received June 29, 2021
Accepted November 9, 2021

References

1. Abd-Elghany SM, Zaher HA, Elgazzar MM, Sallam KI 2020: Effect of boiling and grilling on some heavy metal residues in crabs and shrimps from the Mediterranean Coast at Damietta region with their probabilistic health risk assessment. J Food Compost Anal 93: 103606 <https://doi.org/10.1016/j.jfca.2020.103606>
2. Altinok I, Capkin E, Karahan S, Boran M 2006: Effects of water quality and fish size on toxicity of methiocarb, a carbamate pesticide, to rainbow trout. Environ Toxicol Pharmacol 22: 20-26 <https://doi.org/10.1016/j.etap.2005.11.002>
3. Arisekar U, Shakila R, Jeyasekaran G, Shalini R, Kumar P, Malani AH, Rani V 2019: Accumulation of organochlorine and pyrethroid pesticide residues in fish, water, and sediments in the Thamirabarani river system of southern peninsular India. Environ Nanotechnol Monit Manag 11: 100194
4. Azizi G, Layachi M, Akodad M, Yanez-Ruiz DR, Martin-García AI, Baghour M, Mesfioui A, Skalli A, Moumen A 2018: Seasonal variations of heavy metals content in mussels (Mytilus galloprovincialis) from Cala Iris offshore (Northern Morocco). Mar Pollut Bull 137: 688-694 <https://doi.org/10.1016/j.marpolbul.2018.06.052>
5. Basu S, Chanda A, Gogoi P, Bhattacharyya S 2021: Organochlorine pesticides and heavy metals in the zooplankton, fishes, and shrimps of tropical shallow tidal creeks and the associated human health risk. Mar Pollut Bull 165: 112170 <https://doi.org/10.1016/j.marpolbul.2021.112170>
6. Battaglin WA, Bradley PM, Iwanowicz I, Journey CA, Walsch HLS, Blazer, VS 2018: Pharmaceuticals, hormones, pesticides, and other bioactive contaminants in water, sediment, and tissue from Rocky Mountain National Park, 2012-2013. Sci Total Environ 643: 651-673 <https://doi.org/10.1016/j.scitotenv.2018.06.150>
7. Beck K, Mariani, M, Fletscher MS, Schneider L, Aqiuano-Lopez MA, Gadd PS, Hejnis H, Saunders KM, Zawadski A 2020: The impacts of intensive mining on terrestrial and aquatic ecosystems: A case of sediment pollution and calcium decline in cool temperate Tasmania, Australia. Environ Pollut 265: 114695 <https://doi.org/10.1016/j.envpol.2020.114695>
8. Bekele TG, Zhao H, Wang Q 2021: Tissue distribution and bioaccumulation of organophosphate esters in wild marine fish from Laizhou Bay, North China: Implications of human exposure via fish consumption. J Hazard Mater 401: 123410 <https://doi.org/10.1016/j.jhazmat.2020.123410>
9. Bischoff K, Priest H, Mount-Long A 2010: Animals as sentinels for human lead exposure: A case report. J Med Toxicol 6: 185-189 <https://doi.org/10.1007/s13181-010-0014-9>
10. Briffa J, Sinagra E, Blundell R 2020: Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6: 04691 <https://doi.org/10.1016/j.heliyon.2020.e04691>
11. Buah-Kwofie A, Humphries MS 2021: Organochlorine pesticide accumulation in fish and catchment sediments of Lake St Lucia: Risks for Africa’s largest estuary. Chemosphere 274: 129712 <https://doi.org/10.1016/j.chemosphere.2021.129712>
12. Buck DG, Evers DC, Adams E, Digangi J, Beeler B, Samanek J, Petrklic J, Turnquist MA, Speranskaya O, Regan K, Johnson S 2019: A global-scale assessment of fish mercury concentrations and the identification of biological hotspots. Sci Total Environ 687: 956-966 <https://doi.org/10.1016/j.scitotenv.2019.06.159>
13. Burger J 2008: Assesment and management of risk to wild from cadmium. Sci Total Environ 389: 37-45 <https://doi.org/10.1016/j.scitotenv.2007.08.037>
14. Byeon E, Park JC, Hagiwara A, Han J, Lee JS 2020: Two antidepressants fluoxetine and sertraline cause growth retardation and oxidative stress in the marine rotifer Brachionus koreanus. Aquat Toxicol 218: 105337 <https://doi.org/10.1016/j.aquatox.2019.105337>
15. Cahova J, Blahova J, Marsalek P, Doubkova V, Franc A, Gajarova M, Tichy F, Mares J, Svobodova Z 2021: The biological activity of the organic UV filter ethylhexyl methoxycinnamate in rainbow trout (Oncorhynchus mykiss). Sci Total Environ 774: 145570 <https://doi.org/10.1016/j.scitotenv.2021.145570>
16. Čaloudová H, Čaloudová J, Svobodová Z 2021: A review of the effects of metallic nanoparticles on fish. Acta Vet Brno 90: 331-347 <https://doi.org/10.2754/avb202190030331>
17. Canli EG, Canli M 2020: Effects of aluminum, copper and titanium nanoparticles on the liver antioxidant enzymes of the Nile fish (Oreochromis niloticus). Energy Rep 6: 62-67 <https://doi.org/10.1016/j.egyr.2020.10.047>
18. Carlsson G, Örn S, Andersson PL, Söderström H, Norrgren L 2000: The impact of musk ketone on reproduction in zebrafish (Danio rerio). Mar Environ Res 50: 1-5 <https://doi.org/10.1016/S0141-1136(00)00075-1>
19. Castro-Gonzalez MI, Mendez–Armenta M 2008: Heavy metals: Implications associated to fish consumption. Environ Toxicol Pharmacol 26: 263-271 <https://doi.org/10.1016/j.etap.2008.06.001>
20. Chambers HW, Meek EC, Chambers JE 2010: Chemistry of organophosphorus insekticides. In: Kriger, R., (Ed). Hayes handbook of pesticides toxicology 2: 1395-1398 <https://doi.org/10.1016/B978-0-12-374367-1.00064-1>
21. Chang J, Liu S, Zhou S, Wang M, Zhu G 2013: Effects of butachlor on reproduction and hormone levels in adult zebrafish (Danio rerio). Exp Toxicol Pathol 65: 205-209 <https://doi.org/10.1016/j.etp.2011.08.007>
22. Chen F, Wu L, Xiao X, Rong L, Li M, Zou X 2020: Mixture toxicity of zinc oxide nanoparticle and chemicals with different mode of action upon Vibrio fischeri. Environ Sci Eur 32: 1-10
23. Chowdhury J, Mandal TK, Mondal, S 2020: Genotoxic impact of emerging contaminant amoxicillin residue on zebra fish (Danio rerio) embryos. Heliyon: e05379
24. Cong Y, Jing F, Wang J, Mu J 2017: The embryotoxicity of ZnO nanoparticles to marine medaka, Oryzias melastigma. Aquat Toxicol 185: 11-18 <https://doi.org/10.1016/j.aquatox.2017.01.006>
25. Costa F, Coelho JP, Baptista J, Martinho F, Pereira ME, Pardal MA 2020: Mercury accumulation in fish species along the Portuguese coast: Are there potential risks to human health? Mar Pollut Bull 150: 110740 <https://doi.org/10.1016/j.marpolbul.2019.110740>
26. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off J Euro Union L 364: 5-24
27. Cremlyn RJW 1978: Pesticides: Preparation and mode of action. Wiley, Chichester, Uk, 240.
28. Dabeka RW, Mckenzie AD, Forsyth DS 2011: Levels of total mercury in predatory fish sold in Canada in 2005. Food Addit Contam Part A Chem. Anal Control Expo Risk Assess 28: 740-743 <https://doi.org/10.1080/19440049.2011.571714>
29. De Souza RM, Seibert D, Quesada HB, Basseti F, Fagundes-Klen MR 2020: Occurrence, impacts and general aspects of pesticides in surface water: A review. Process Saf Environ Prot 135: 22-37 <https://doi.org/10.1016/j.psep.2019.12.035>
30. Díaz-Resendiz KJG, Ortiz-Lazareno PC, Covantes-Rosales CE, Trujillo-Lepe AM, Toledo-Ibarra GA, Ventura-Ramón GH, Girón-Peréz MI 2019: Effect of diazinon, an organophosphate pesticide, on signal transduction and death induction in mononuclear cells of Nile tilapia fish (Oreochromis niloticus). Fish Shellfish Immunol 89: 12-17 <https://doi.org/10.1016/j.fsi.2019.03.036>
31. Dvidedi AK 2017: Rerearches in water pollutation: A Review. IRJNAS, 118-142
32. EC Regulation. No 396/2005 of the European Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC 2005
33. Efosa NJ, Kleiner W, Werner K, Hoffmann F 2017: Diclofenac can exhibit estrogenic modes of action in male Xenopus laevis, and affects the hypothalamus-pituitary-gonad axis and mating vocalizations. Chemosphere 173: 69-77 <https://doi.org/10.1016/j.chemosphere.2017.01.030>
34. Ejaz N, Akhtar N, Nisar H, Naeem UA 2010: Environmental impacts of improper solid waste management in developing countries: a case study of Rawalpindi City. Sustain world 142: 379-387 <https://doi.org/10.2495/SW100351>
35. European Food Safety Authority (EFSA) 2005: Opinion of the scientific panel on contaminants in the food chain and on a request from the European Parliament related to the safety assessment of wild and farmed fish. The EFSA 236: 1-118
36. European Food Safety Authority (EFSA) 2016: Presence of microplastics and nanoplastics in food, with particular focus on seafood. The EFSA, 30
37. Federici G, Shaw BJ, Handy RD 2007: Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): Gill injury, oxidative stress, and other physiological effects. Aquat Toxicol 84: 415-430 <https://doi.org/10.1016/j.aquatox.2007.07.009>
38. Ferreira M, Thompson J, Paris A, Rohindra D, Rico C 2020: Presence of microplastics in water, sediments and fish species in an urban coastal environment of Fiji, a Pacific small island developing state. Mar Pollut Bull 153: 110991 <https://doi.org/10.1016/j.marpolbul.2020.110991>
39. Georgantzopoulou A, Farkas J, Ndungu K, Coutris C, Carvalho PA, Booth AM, Makcen A 2020: Wastewater-aged silver nanoparticles in single and combined exposures with titanium dioxide affect the early development of the marine Copepod Tisbe battagliai. Environ Sci Technol 54: 12316-12325 <https://doi.org/10.1021/acs.est.0c03113>
40. Ghazala SM, Al-Ghanim KA, Sultana S, Al-Balawi HFA, Sultana A, Al-Misned F, Ahmed Z 2014: Acute toxicity II: Effect of organophosphates and carbamates to Catla Catla fingerling. J Anim Plant Sci 24: 1795-1801
41. Ghosh GC, Akter SM, Islam RM, Habib A, Chakraborty TK, Zaman S, Kabir EAHM, Shipin OV, Wahid MA 2021: Microplastics contamination in commercial marine fish from the Bay of Bengal. Reg Stud Mar Sci 44: 101728 <https://doi.org/10.1016/j.rsma.2021.101728>
42. Gómez-Oliván L, Martinéz M, García Medina S, Valdéz-Alanís A, Islas-Flores H, Neri N 2014: Genotoxic response and oxidative stress induced by diclofenac, ibuprofen and naproxen in Daphnia magna. Drug Chem Toxicol 351: 391-399 <https://doi.org/10.3109/01480545.2013.870191>
43. Goulding AT, Shelley LK, Peter S, Kennedy CHJ 2013: Reduction in swimming performance in juvenile rainbow trout (Oncorhynchus mykiss) following sublethal exposure to pyrethroid insecticides. CBCC 157: 280-286
44. Guiloski IC, Ribas JLC, Piancini LDS, Dagostim AC, Cirio SM, Fávaro LF, Boschen SL, Cestari MM, Da Cunha C, Silva de Assis HC 2017: Paracetamol causes endocrine disruption and hepatotoxicity in male fish Rhamdia quelen after subchronic exposure. Environ Toxicol Pharmacol 53: 111-120 <https://doi.org/10.1016/j.etap.2017.05.005>
45. Hassaan, MA, Nemr AE 2020: Pesticides pollution: Classifications, human health impact, extraction and treatment techniques. Egypt J Aquat Res 46: 207-220 <https://doi.org/10.1016/j.ejar.2020.08.007>
46. Haseena M, Malik MF, Javed A, Arshad S, Asif N, Zulfiqar S, Hanif J 2017: Water pollution and human health, ISO4 Standard. Environ Risk Assess Remediat 1: 16-19 <https://doi.org/10.4066/2529-8046.100020>
47. Hollerova A, Hodkovicova N, Blahova J, Faldyna M, Marsalek P, Svobodova Z 2021: Microplastics as a potencial risk for aquatic environment organisms – a review. Acta Vet Brno 90: 99-107 <https://doi.org/10.2754/avb202190010099>
48. Hontela A, Daniel C, Ricar AC 1996: Effects of acute and subacute exposures to cadmium on the interrenal and thyroid function in rainbow trout, Oncorhynchus mykiss. Aquat Toxicol 35: 171-182 <https://doi.org/10.1016/0166-445X(96)00012-4>
49. Huang W, Cao L, Liu J, Lin L, Dou S 2010: Short-term mercury exposure affecting the development and antioxidant biomarkers of Japanese flounder embryos and larvae. Ecotoxicol Environ Saf 73: 1875-1883 <https://doi.org/10.1016/j.ecoenv.2010.08.012>
50. International Organization for Standardization 2011: Nanotechnologies–Vocabulary–Part 4: Nanostructured materials. International (ISO Standard 80004-4). ISO copyright office, Geneva, 7
51. Ji K, Liu X, Lee S, Kang S, Kho Y, Giesy JP, Choi K 2013. Effects of non-steroidal anti-inflammatory drugs on hormones and genes of the hypothalamic-pituitary-gonad axis, and reproduction of zebrafish. J Hazard Mater 254-255: 242-251 <https://doi.org/10.1016/j.jhazmat.2013.03.036>
52. Jo H, Raza S, Farooq A, Kim J, Unno T 2021: Fish farm effluents as a source of antibiotic resistance gene dissemination on Jeju Island. South Korea Environ Pollut 276: 116764 <https://doi.org/10.1016/j.envpol.2021.116764>
53. Küster E, Altenburger R 2006: Comparison of cholin- and carboxylesterase enzyme inhibition and visible effects in the zebra fish embryo bioassay under short-term paraoxon-methyl exposure. Biomarkers 11: 341-354 <https://doi.org/10.1080/13547500600742136>
54. Lamb SD, Chia JHZ, Johnson SL 2020: Paternal exposure to a common herbicide alters the behavior and serotonergic system of zebrafish offspring. PLoS One 15: e0228357 <https://doi.org/10.1371/journal.pone.0228357>
55. Li H, Jiang W, Pan Y, Li F, Wang Ch, Tian H 2021: Occurrence and partition of organochlorine pesticides (OCPs) in water, sediment, and organisms from the eastern sea area of Shandong Peninsula, Yellow Sea, China. Mar Pollut Bull 162: 111906 <https://doi.org/10.1016/j.marpolbul.2020.111906>
56. Li M, Liu W, Slaveykova VI 2020: Effects of mixtures of engineered nanoparticles and metallic pollutants on aquatic organisms. Environments 7: 1-20 <https://doi.org/10.3390/environments7040027>
57. Liu S, Bekele TG, Zhao H, Cai X, Chen J 2018: Bioaccumulation and tissue distribution of antibiotics in wild marine fish from Laizhou Bay, North China. Sci Total Environ 631: 1398-1405 <https://doi.org/10.1016/j.scitotenv.2018.03.139>
58. Lou YH, Wang J, Wang L 2016: Determination of synthetic musks in sediments of Yellow river Delta Wetland, China. Bull Environ Contam Toxicol 97: 78-83 <https://doi.org/10.1007/s00128-016-1814-7>
59. Marturano V, Cerruti P, Ambrogi V 2017: Polymer additives. Phys Sci Res: 1-20
60. Martyniuk CHJ, Mehinto AC, Dendslow ND 2020: Organochlorine pesticides: Agrochemicals with potent endocrine-disrupting properties in fish. Mol Cell Endocrinol 507: 110764 <https://doi.org/10.1016/j.mce.2020.110764>
61. Matongo S, Birungi G, Moodley B, Ndungu P 2015: Pharmaceutical residues in water and sediment of Msunduzi River, Kwazulu-Natal, South Africa. Chemosphere 134: 133-140 <https://doi.org/10.1016/j.chemosphere.2015.03.093>
62. Meyer W, Kretschmer M, Hoffmann A, Harisch G 1991: Biochemical and histochemical observations on effects of low-level heavy metal load (lead, cadmium) in different organ systems of the freshwater crayfish, Astacus astacus L. (crustacea: Decapoda). Ecotoxicol Environ Saf 21: 137-156 <https://doi.org/10.1016/0147-6513(91)90016-I>
63. Miranda RR, Damaso Da Silveira AL, De Jesus IP, Grotzer SR, Voigt CL, Campos SX, Garcia, JR, Randi, MA, Ribeiro CA, Filipak NF 2016: Effects of realistic concentrations of TiO₂ and ZnO nanoparticles in Prochilodus lineatus juvenile fish. Environ Sci Pollut Res Int 23: 5179-5188 <https://doi.org/10.1007/s11356-015-5732-8>
64. Mwevura H, Kylin H, Vogt T, Bouwman H 2021: Dynamics of organochlorine and organophosphate pesticide residues in soil, water, and sediment from the Rufiji River Delta, Tanzania. Reg Stud Mar Sci 41: 101607 <https://doi.org/10.1016/j.rsma.2020.101607>
65. Naidoo T, Glassom D 2019. Decreased growth and survival in small juvenile fish, after chronic exposure to environmentally relevant concentrations of microplastic. Mar Pollut Bull 145: 254-259 <https://doi.org/10.1016/j.marpolbul.2019.02.037>
66. National Oceanic and Atmospheric Administration NOAA, 2014. http://www.deq.state.va.us/programs/coastalzonemanagment.aspx.
67. Nel A, Xia TL, Madler L, Li N 2006: Toxic potential of materials at the nanolevel. Science 311: 622-627 <https://doi.org/10.1126/science.1114397>
68. Niane B, Guderon S, Feder F, Legros S, Malick Ngom P, Moritz R 2019: Impact of recent artisanal small-scale gold mining in Senegal: Mercury and methylmercury contamination of terrestrial and aquatic ecosystems. Sci Total Environ 669: 185-193 <https://doi.org/10.1016/j.scitotenv.2019.03.108>
69. Nicklisch, SCT, Bonito LT, Sandin S, Hamdoun A 2017: Mercury levels of yellowfin tuna (Thunnus albacares) are associated with capture location. Environ Pollut 229: 87-93 <https://doi.org/10.1016/j.envpol.2017.05.070>
70. Niemuth NJ, Jordan R, Crago J, Blanksma C, Johnson R, Klaper RD 2015: Metformin exposure at environmentally relevant concentrations causes potential endocrine disruption in adult male fish. Environ Toxicol Chem 34: 291-296 <https://doi.org/10.1002/etc.2793>
71. Novak M, Žegura B, Modic B, Heath E, Filipič M 2017: Cytotoxicity and genotoxicity of anticancer drug residues and their mixtures in experimental model with zebrafish liver cells. Sci Total Environ 601-602: 293-300 <https://doi.org/10.1016/j.scitotenv.2017.05.115>
72. Owa FD 2013: Water: sources, effects, control and management. Mediterr J Soc Sci 4: 64-68
73. Oya-Silva LF, Vicari T, Rodrigo Disner G, Lirola JR, Klingelfus T, Goncalves HDLS, Leite TPB, Calado SLDM, Voigt CL, Silva De Assis HC, Cestari MM 2021: Tissue-specific genotoxicity and antioxidant imbalance of titanium dioxide nanoparticles (NPTiO2) and inorganic lead (PbII) in a neotropical fish species. Environ Toxicol Pharmacol 82: 103551 <https://doi.org/10.1016/j.etap.2020.103551>
74. Peda C, Caccamo L, Fossi MC, Gai F, Andaloro F, Genovese L, Perdichizzi A, Romeo T, Marichiollo G 2016: Intestinal alterations in European sea bass Dicentrarchus labrax (Linnaeus, 1758) exposed to microplastics: Preliminary results. Environ Pollut 212: 251-256 <https://doi.org/10.1016/j.envpol.2016.01.083>
75. Pieróg M, Socała K, Doboszewska U, Wyska E, Guz L, Szopa A, Serefko A, Polezsak E, Wlaź P 2021: Effects of classic antiseizure drugs on seizure activity and anxiety-like behavior in adult zebrafish. Toxicol App Pharmacol 415: 115429 <https://doi.org/10.1016/j.taap.2021.115429>
76. Pohl J 2019: Zebrafish (Danio rerio) embryo-larvae locomotor activity data analysis: Evaluating anxiolytic effects of the antidepressant compound citalopram. Data in Brief 27: 104812 <https://doi.org/10.1016/j.dib.2019.104812>
77. Qu L, Zhao C, Wang C 2018: A Nnovel zebrafish (Danio rerio) assay for assessing musk ambrette-induced toxicity. Bull Environ Contam Toxicol 101: 80-85 <https://doi.org/10.1007/s00128-018-2363-z>
78. Rao JV, Begum G, Pallela R, Usman PK, Rao RN 2005: Changes in behaviour and brain acetylcholinesterase activity in mosquito fish, Gambusia affinis in response to the sub-lethal exposure to chlorpyrifos. Int J Environ Res Public Health 2: 474-483 <https://doi.org/10.3390/ijerph2005030013>
79. RASFF 2021: Available at: https://webgate.ec.europa.eu/rasff-window/screen/list
80. Regulation (EU) 2017/852 of European Parliament and of the council of 17 May 2017 on mercury and repealing Regulation (EC) No 1102/2008. Official Journal of the European Union.
81. Reis J, Mizusawa H 2019: Environmental challenges for the nervous system and brain in Japan. Rev Neurol 175: 693-697 <https://doi.org/10.1016/j.neurol.2019.09.002>
82. Rezka P, Balcerzak W 2016: Occurrence of antidepressants – from wastewater to drinking water. Technic Trans 1: 145-155
83. Rochman CHM, Kurobe T, Flores I, Swee JT 2014: Early warning signs of endocrine disruption in adult fish from the ingestion of polyethylene with and without sorbed chemical pollutants from the marine environment. Sci Tot Environ 493: 656-661 <https://doi.org/10.1016/j.scitotenv.2014.06.051>
84. Rogers JT, Richards JG, Wood CM 2003: Ionoregulatory disruptionas the acute toxic mechanism for lead in the rainbow trout (Oncorhynchus mykkis). Aquat Toxicol 64: 215-234 <https://doi.org/10.1016/S0166-445X(03)00053-5>
85. Salameh PR, Baldi I, Brochard P, Bernadette AS 2004: Pesticides in Lebanon: a knowledge, attitude, and practice study. Environ Res 94: 1-6 <https://doi.org/10.1016/S0013-9351(03)00092-6>
86. Sandahl JF, Baldwin DH, Jekins JJ, Scholz NL 2005: Comparative thresholds for acetylcholinesterase inhibition and behavioral impairment in coho salmon exposed to chlorpyrifos. Environ Toxicol Chem 24: 136-145 <https://doi.org/10.1897/04-195R.1>
87. Serafim A, Bebianno M 2007: Kinetic model of cadmium accumulation and ellimination and metallothione response in Ruditapes decussatus. Environ Toxicol Chem 26: 960-969 <https://doi.org/10.1897/06-237R.1>
88. Shi Z, Wang X, Shi Y, Ni S, Li Y, Wang D, Wang R 2019: Impact of intensive mining on the distribution of heavy metals in water and sediment of Anning River, southwest China, geochemistry: exploration. Environ Anal 19: 24-30
89. Skenderovic I, Kalac B, Becirovic S 2015: Environmental pollution and waste management. Balkan J Health Sci 3: 2-10
90. Sorensen EMB, Ramirezmitchell R, Pradzynski A, Bayer TL, Wenz LL 1985: Stereological analyses of hepatocyte changes parallel arsenic accumulation in the livers of green sunfish. J Environ Pathol Toxicol Oncol 7: 195-210
91. Stockholm Convention 2009, COP4 final, Earth Negotiation Bulletin 15: 174
92. Storek ET, Kavlock R 2010: Pesticides as endocrinine-disrupting chemicals, In: Kriger, R., (Ed.) Hayes handbook of pesticides toxicology. Elseiver, Amsterdam, the Netherlands 23: 551- 569
93. Tavera - Mendoza L, Ruby S, Brousseau P, Fournier M, Cyr D, Marcogliese D 2002: Response of the amphibian tadpole Xenopus laevis to atrazine during sexual differentiation of the ovary. Environ Toxicol Chem 21: 1264-1270 <https://doi.org/10.1002/etc.5620210621>
94. Thuy TT 2015: Effects of DDT on environment and human health. J Soc Dev Sci 2: 108-114.
95. Tou F, Wu J, Fu J, Niu Z, Liu M, Yang Y 2021: Titanium and zinc-containing nanoparticles in estuarine sediments: Occurrence and their environmental implications. Sci Tot Environ 754: 142388 <https://doi.org/10.1016/j.scitotenv.2020.142388>
96. Trang CTT, Thung DC, Kha PT, Nam LV, Nghi DT 2018: Residue of organochlorinated pesticides, (OCPs) in some organisms of the tidal flats in the northern part of Vietnam. J Mar Sci Technol 19: 427-433
97. Ungherese G, Mengoni A, Somigli S, Baroni D, Focardi S, Ugolini A 2010: Relationship between heavy metals pollution and genetic diversity in Mediterranean populations of the sandhopper Talitrus saltator (Montagu) (Crustacea, Amphipoda). Environ Poll 158: 1638-1643 <https://doi.org/10.1016/j.envpol.2009.12.007>
98. Usman UL, Muhammad AZ, Banerjee S, Neksumi M 2021: Bioaccumulation potential of heavy metals in some commercially fish species from Cika Koshi reservoir Katsina North- western Nigeria: Threat to ecosystem and public health. Materials Today: Proceedings, 2214-7853
99. Vaclavik J, Sehonova P, Hodkovicova N, Vecerkova L, Blahova J, Franc A, Marsalek P, Mares J, Tichy F, Svobodova Z, Faggio C 2020: The effect of foodborne sertraline on rainbow trout (Oncorhynchus mykiss). Sci Total Environ 708: 135082 <https://doi.org/10.1016/j.scitotenv.2019.135082>
100. Vallecillos L, Pocorull E, Borrul F 2015: Influence of pre-treatment process on matrix effect for the determination of musk fragrances in fish and mussel. Talanta 134: 690-698 <https://doi.org/10.1016/j.talanta.2014.12.010>
101. Vijverberg HPM, Van Bergkens J 1990: Neurotoxicological effects and the mode of action of pyrethroid insecticides. Crit Rev Toxicol 21: 105-126 <https://doi.org/10.3109/10408449009089875>
102. Wei J, Duan M, Li Y, Nwankwegu AS, Ji Y, Zhang J 2019: Concentration and pollution assessment of heavy metals within surface sediments of the Raohe Basin, China. Sci Rep 9: 13100 <https://doi.org/10.1038/s41598-019-49724-7>
103. Weng SC, Sun PZ, Huang WW, Lee CH, Blatchley LT 2014: The presence of pharmaceuticals and personal care products in swimming pools. Environ Sci Technol Lett 1: 495-498 <https://doi.org/10.1021/ez5003133>
104. Wesseling C, Mcconnell R, Partanen T, Hogstedt C 1997: Agricultural pesticide use in developing countries: health effectsand research needs. Int J Health Survey 27: 273-308 <https://doi.org/10.2190/E259-N3AH-TA1Y-H591>
105. Wolmarans NJ, Bervoets L, Gerber R, Yohanees YB, Shouta MM, Ikenawa NY, Ishizuka M, Meire P, Smith PJ, Wepener V 2021: Bioaccumulation of DDT and other organochlorine pesticides in amphibians from two conservation areas within malaria risk regions of South Africa. Chemosphere 274: 129956 <https://doi.org/10.1016/j.chemosphere.2021.129956>
106. Xie D, CHen Q, Gong S, An J, Li Y, Lian X, Liu Z, Shen Y, Giesy JP 2020: Exposure of zebrafish to environmentally relevant concentrations of mercury during early life stages impairs subsequent reproduction in adults but can be recovered in offspring. Aquat Toxicol 229: 105655 <https://doi.org/10.1016/j.aquatox.2020.105655>
107. Xie Z, Lu G, Hou K, Qin D, Yan Z, Chen W 2016: Bioconcentration, metabolism and effects of diphenhydramine on behavioral and biochemical markers in crucian carp (Carassius auratus). Sci Total Environ 544: 400-409 <https://doi.org/10.1016/j.scitotenv.2015.11.132>
108. Xing HJ, Li S, Wang ZL, Gao XJ, Xu SW, Wang XL 2012: Histopathological changes and antioxidant response in brain and kidney of common carp exposed to atrazine and chlorpyrifos. Chemosphere 88: 377-383 <https://doi.org/10.1016/j.chemosphere.2012.02.049>
109. Yang CH, Lim W, Song G 2020: Mediation of oxidative stress toxicity induced by pyrethroid pesticides in fish. Comp Biochem 234: 108758
110. Yin CH, Zhao W, Liu R, Liu R, Wang Z, Zhu L, Chen W, Liu S 2017: TiO2 particles in seafood and surimi products: Attention should be paid to their exposure and uptake through foods. Chemosphere 188: 541-547 <https://doi.org/10.1016/j.chemosphere.2017.08.168>
111. Yu H, Peng J, Cao X, Wang Y, Zhang Z, Xu Y, Qi W 2021: Effects of microplastics and glyphosate on growth rate, morphological plasticity, photosynthesis, and oxidative stress in the aquatic species Salvinia cucullata. Environ Pollut 279: 116900 <https://doi.org/10.1016/j.envpol.2021.116900>
112. Zeng L, Luo G, He T, Yanna Guo Y, Qian X 2016: Effects of sulfate-reducing bacteria on methylmercury at the sediment–water interface. J Environ Sci 46: 214-219 <https://doi.org/10.1016/j.jes.2016.05.018>
113. Zhang R, Yu K, Li A, Wang Y, Pan CH, Huang X 2020: Antibiotics in coral reef fishes from the South China Sea: Occurrence, distribution, bioaccumulation, and dietary exposure risk to human. Sci Total Environ 704: 135288 <https://doi.org/10.1016/j.scitotenv.2019.135288>
114. Zhang D, Fraser MA, Huang W, Ge CH, Wang Y, Zhang CH, Guo P 2021: Microplastic pollution in water, sediment, and specific tissues of crayfish (Procambarus clarkii) within two different breeding modes in Jianli, Hubei province, China. Environ Pollut 272: 115939 <https://doi.org/10.1016/j.envpol.2020.115939>
115. Zhu H, Zheng M, Zheng L, Wang L, Lou Y, Zhao Q, Zhang Y 2019: Distribution and ecotoxicological effects of polyhalogenated carbazoles in sediments from Jiaozhou Bay wetland. Mar Pollut Bull 146: 393-398 <https://doi.org/10.1016/j.marpolbul.2019.06.078>
front cover
  • ISSN 0001-7213 (printed)
  • ISSN 1801-7576 (electronic)

Current issue

Archive