Acta Vet. Brno 2022, 91: 17-34

https://doi.org/10.2754/avb202291010017

Point of care diagnostics and non-invasive sampling strategy: a review on major advances in veterinary diagnostics

Mousumi Bora1, Manu M1, Dayamon D. Mathew1, Himasri Das2, Durlav Prasad Bora2, Nagendra Nath Barman2

1Banaras Hindu University, Faculty of Veterinary and Animal Sciences, Mirzapur, Uttar Pradesh, India
2Assam Agricultural University, College of Veterinary Science, Guwahati, Assam, India

Received May 17, 2021
Accepted October 11, 2021

References

1. Al-Zi’abi O, Nishikawa H, Meyer H 2007: The first outbreak of camelpox in Syria. J Vet Sci 69: 541-543 <https://doi.org/10.1292/jvms.69.541>
2. Anderson J, McKay JA, Butcher RN 1990: Seromonitoring of rinderpest throughout Africa: phase one. In: Proceedings of the final research coordination meeting of the IAEA rinderpest control projects, Côte d’Ivoire, pp. 19-23
3. Bai H, Wang R, Hargis B, Lu H, Li Y 2012: A SPR aptasensor for detection of avian influenza virus H5N1. Sensors 12: 12506-12518 <https://doi.org/10.3390/s120912506>
4. Bailey ES, Choi JY, Zemke J, Yondon M, Gray GC 2018: Molecular surveillance of respiratory viruses with bioaerosol sampling in an airport. Trop Dis Travel Med Vaccines 4: 1-5 <https://doi.org/10.1186/s40794-018-0071-7>
5. Balogh EP, Miller BT, Ball JR 2015: Committee on Diagnostic Error in Health Care; Board on Health Care Services; Institute of Medicine; Improving Diagnosis in Health Care. Washington, D.C., USA, National Academies Press
6. Baneth G 2015: Invasive and non-invasive diagnostic techniques for pet infectious diseases. In: Proceedings of the 40th World Small Animal Veterinary Association Congress, Bangkok, Thailand, 15-18 May, pp. 450-451. World Small Animal Veterinary Association
7. Baron J, Fishbourne E, Couacy‐Hyman E, Abubakar M, Jones BA, Frost L, Herbert R, Chibssa TR, Van’t Klooster G, Afzal M, Ayebazibwe C 2014: Development and testing of a field diagnostic assay for peste des petits ruminants virus. Transbound Emerg Dis 61: 390-396 <https://doi.org/10.1111/tbed.12266>
8. Bataille A, Kwiatek O, Belfkhi S, Mounier L, Parida S, Mahapatra M, Caron A, Chubwa CC, Keyyu J, Kock R, Jones BA, Libeau G 2019: Optimization and evaluation of a non-invasive tool for peste des petits ruminants surveillance and control. Sci Rep 9: 4742 <https://doi.org/10.1038/s41598-019-41232-y>
9. Beemer O, Remmenga M, Gustafson L, Johnson K, His D, Antognoli MC 2019: Assessing the value of PCR assays in oral fluid samples for detecting African swine fever, classical swine fever, and foot-and-mouth disease in US swine. PloS One 14: e0219532 <https://doi.org/10.1371/journal.pone.0219532>
10. Bhimani MP, Bhanderi BB, Roy A 2015: Loop mediated Isothermal Amplification assay (LAMP) based detection of Pasteurella multocida in cases of haemorrhagic septicaemia and fowl cholera. Vet Ital 51: 115-121
11. Biogal Galed Labs 2015: Immunocomb. Bovine Neospora Antibody Test Kit. Available at http://www.agrolabo.it/wp-content/uploads/immunoc-bovine-neospora.pdf
12. Biswas S, Bhatt S, Paul S, Modi S, Ghosh T, Habib B, Nigam P, Talukdar G, Pandav B, Mondol S 2019: A practive faeces collection protocol for multidisciplinary research in wildlife science. BioRxiv: 537803
13. Bragheri F, Vázquez RM, Osellame R 2020: Microfluidics. In: Three-Dimensional Microfabrication Using Two-Photon Polymerization, William Andrew Publishing, pp. 493-526
14. Busin V, Wells B, Kersaudy-Kerhoas M, Shu W, Burgess ST 2016: Opportunities and challenges for the application of microfluidic technologies in point-of-care veterinary diagnostics. Mol Cell Probes 30: 331-341 <https://doi.org/10.1016/j.mcp.2016.07.004>
15. Busin V, Burgess S, Shu W 2018: A hybrid paper-based microfluidic platform toward veterinary P-ELISA. Sens Actuators B Chem 273: 536-542 <https://doi.org/10.1016/j.snb.2018.06.075>
16. Cętre-Sossah C, Pédarrieu A, Juremalm M, Jansen Van Vuren P, Brun A, Ould El Mamy AB, Héraud JM, Filippone C, Ravalohery JP, Chaabihi H, Albina E 2019: Development and validation of a pen side test for Rift Valley fever. PLOS Negl Trop Dis 13: e0007700 <https://doi.org/10.1371/journal.pntd.0007700>
17. Chang YF, Wang WH, Hong YW, Yuan RY, Chen KH, Huang YW, Lu PL, Chen YH, Chen YM, Su LC, Wang SF 2018: Simple strategy for rapid and sensitive detection of avian influenza A H7N9 virus based on intensity-modulated SPR biosensor and new generated antibody. Anal Chem 90: 1861-1869 <https://doi.org/10.1021/acs.analchem.7b03934>
18. Chen HT, Zhang J, Liu YS, Liu XT 2011: Detection of foot-and-mouth disease virus RNA by reverse transcription loop-mediated isothermal amplification. Virol J 8: 510 <https://doi.org/10.1186/1743-422X-8-510>
19. Chen HT, Zhang J, Sun DH, Chu YF, Cai XP, Liu XT, Luo XN, Liu Q, Liu YS 2008: Rapid detection of porcine circovirus type 2 by loop-mediated isothermal amplification. J Virol Methods 149: 264-268 <https://doi.org/10.1016/j.jviromet.2008.01.023>
20. Chowdry VK, Luo Y, Widén F, Qiu HJ, Shan H, Belák S, Liu L 2014: Development of a loop-mediated isothermal amplification assay combined with a lateral flow dipstick for rapid and simple detection of classical swine fever virus in the field. J Virol Methods 197: 14-18 <https://doi.org/10.1016/j.jviromet.2013.11.013>
21. Coleman KK, Nguyen TT, Yadana S, Hansen-Estruch C, Lindsley WG, Gray GC 2018: Bioaerosol sampling for respiratory viruses in Singapore’s mass rapid transit network. Sci Rep 8: 1-7
22. Corstjens PL, Abrams WR, Malamud D 2012: Detecting viruses by using salivary diagnostics. J Am Dent Assoc 143: 12S-18S <https://doi.org/10.14219/jada.archive.2012.0338>
23. de Puig H, Bosch I, Gehrke L, Hamad-Schifferli K 2017: Challenges of the nano–bio interface in lateral flow and dipstick immunoassays. Trends Biotechnol 35: 1169-1180 <https://doi.org/10.1016/j.tibtech.2017.09.001>
24. Dib LV, Palmer JP, Bastos OM, Uchôa CM, Amendoeira MR, Bastos AC 2019: Noninvasive Sampling: Monitoring of Wild Carnivores and Their Parasites. In: Protected Areas, National Parks and Sustainable Future, IntechOpen
25. Dietze K, Tucakov A, Engel T, Wirtz S, Depner K, Globig A, Kammerer R, Mouchantat S 2016: Rope-based oral fluid sampling for early detection of classical swine fever in domestic pigs at group level. BMC Vet Res 13: 1-6 <https://doi.org/10.1186/s12917-016-0930-2>
26. Dikid T, Jain SK, Sharma A, Kumar A, Narain JP 2013: Emerging & re-emerging infections in India: an overview. Indian J Med Res 138: 19-31
27. Du X, Zhou J 2018: Application of biosensors to detection of epidemic diseases in animals. Res Vet Sci 118: 444-448 <https://doi.org/10.1016/j.rvsc.2018.04.011>
28. Dynon K, Black WD, Ficorilli N, Hartley CA, Studdert MJ 2007: Detection of viruses in nasal swab samples from horses with acute, febrile, respiratory disease using virus isolation, polymerase chain reaction and serology. Aust Vet J 85: 46-50 <https://doi.org/10.1111/j.1751-0813.2006.00096.x>
29. Eirai S, Nakanishi A, Yasukawa Y, Moriyama M, Konishi M, Inoshima Y 2016: Occurrence and spread of bovine papular stomatitis with different types of lesions among Japanese black calves suspected of having foot-and-mouth disease. J Vet Med Sci 69: 323-328
30. Engering A, Hogerwerf L, Slingenbergh J 2013: Pathogen–host–environment interplay and disease emergence. Emerg Microbes Infect 2: 1-7 <https://doi.org/10.1038/emi.2013.5>
31. Erster O, Melamed S, Paran N, Weiss S, Khinich Y, Gelman B, Solomony A, Laskar-Levy O 2018: First diagnosed case of camelpox virus in Israel. Viruses 10: 78 <https://doi.org/10.3390/v10020078>
32. Fan Q, Xie Z, Xie L, Liu J, Pang Y, Deng X, Xie Z, Peng Y, Wang X 2012: A reverse transcription loop-mediated isothermal amplification method for rapid detection of bovine viral diarrhea virus. J Virol Methods 186: 43-48 <https://doi.org/10.1016/j.jviromet.2012.08.007>
33. FAO 2011: Challenges of Animal Health Informations Systems and Surveillance for Animal Diseases and Zoonoses
34. FAO 2012: Lessons learned from the eradication of rinderpest for controlling other transboundary animal diseases. In: Proceedings of the GREP Symposium and High-Level Meeting, 12-15 October 2010, Rome, Italy. FAO Animal Production and Health Proceedings, No. 15. Rome, Italy
35. FAO, OIE 2015: Global strategy for the control and eradication of PPR
36. FAO, OIE 2020: Global control of African swine fever: A GF-TADs initiative. 2020–2025. Paris. Available at http://www.fao.org/3/ca9164en/CA9164EN.pdf
37. Farooq U, Latif A, Irshad H, Ullah A, Zahur AB, Naeem K, Khan SH, Ahmed Z, Rodriguez LL, Smoliga G 2015: Loop-mediated isothermal amplification (RT-LAMP): a new approach for the detection of foot-and-mouth disease virus and its sero-types in Pakistan. Iran. J Vet Res 16: 331-334
38. Ferris NP, Clavijo A, Yang M, Velazquez-Salinas L, Nordengrahn A, Hutchings GH, Kristersson T, Merza M 2012: Development and laboratory evaluation of two lateral flow devices for the detection of vesicular stomatitis virus in clinical samples. J Virol Methods 180: 96-100 <https://doi.org/10.1016/j.jviromet.2011.12.010>
39. Ferris NP, Nordengrahn A, Hutchings GH, Paton DJ, Kristersson T, Brocchi E, Grazioli S, Merza M 2010: Development and laboratory validation of a lateral flow device for the detection of serotype SAT 2 foot-and-mouth disease viruses in clinical samples. J Virol Methods 163: 474-476 <https://doi.org/10.1016/j.jviromet.2009.09.022>
40. Fowler VL, Howson EL, Madi M, Mioulet V, Caiusi C, Pauszek SJ, Rodriguez LL, King DP 2016: Development of a reverse transcription loop-mediated isothermal amplification assay for the detection of vesicular stomatitis New Jersey virus: Use of rapid molecular assays to differentiate between vesicular disease viruses. J Virol Methods 234: 123-131 <https://doi.org/10.1016/j.jviromet.2016.04.012>
41. Gandon S, Hochberg ME, Holt RD, Day T 2013: What limits the evolutionary emergence of pathogens? Philos Trans R Soc Lond B Biol Sci 368: 20120086 <https://doi.org/10.1098/rstb.2012.0086>
42. Gangil R, Kaur G, Dwivedi PN 2020: Detection of respiratory viral antigens in nasal swabs of bovine by sandwich ELISA. Indian J Anim Res 54: 354-358
43. Gao X, Liu X, Zhang Y, Wei Y, Wang Y 2020: Rapid and visual detection of porcine deltacoronavirus by recombinase polymerase amplification combined with a lateral flow dipstick. BMC Vet Res 16: 1-8 <https://doi.org/10.1186/s12917-020-02341-3>
44. Gaudreault NN, Indran SV, Balaraman V, Wilson WC, Richt JA 2019: Molecular aspects of Rift Valley fever virus and the emergence of reassortants. Virus Genes 55: 1-11 <https://doi.org/10.1007/s11262-018-1611-y>
45. Gilor S, Gilor C 2011: Common laboratory artifacts caused by inappropriate sample collection and transport: how to get the most out of a sample. Top Companion Anim Med 26: 109-118 <https://doi.org/10.1053/j.tcam.2011.02.003>
46. Godinho KS, Sarasola P, Renoult E, Tilt N, Keane S, Windsor GD, Rowan TG, Sunderland SJ 2007: Use of deep nasopharyngeal swabs as a predictive diagnostic method for natural respiratory infections in calves. Vet Rec 160: 22 <https://doi.org/10.1136/vr.160.1.22>
47. Gupta G, Kumar A, Boopathi M, Thavaselvam D, Singh B, Vijayaraghavan R 2011: Rapid and quantitative determination of biological warfare agent Brucella abortus CSP-31 using surface plasmon resonance. Anal Bioanal Electrochem 3: 26-37
48. Gutiérrez AM, De La Cruz-Sánchez E, Montes A, Sotillo J, Gutiérrez-Panizo C, Fuentes P, Tornel PL, Cabezas-Herrera J 2017: Easy and non-invasive disease detection in pigs by adenosine deaminase activity determinations in saliva. PLoS One 12: e0179299 <https://doi.org/10.1371/journal.pone.0179299>
49. Han Q, Zhang S, Liu D, Yan F, Wang H, Huang P, Bi J, Jin H, Feng N, Cao Z, Gao Y 2020: Development of a visible reverse transcription-loop-mediated isothermal amplification assay for the detection of Rift Valley fever virus. Front Microbiol 11: 590732 <https://doi.org/10.3389/fmicb.2020.590732>
50. Hou P, Wang H, Zhao G, He C, He H 2017: Rapid detection of infectious bovine rhinotracheitis virus using recombinase polymerase amplification assays. BMC Vet Res 13: 386 <https://doi.org/10.1186/s12917-017-1284-0>
51. Hou P, Zhao G, Wang H, He C, He H 2018a: Rapid detection of bovine viral diarrhea virus using recombinase polymerase amplification combined with lateral flow dipstick assays in bulk milk. Vet Arh 88: 627-642 <https://doi.org/10.24099/vet.arhiv.0145>
52. Hou P, Zhao G, Wang H, He C, Huan Y, He H 2018b: Development of a recombinase polymerase amplification combined with lateral-flow dipstick assay for detection of bovine ephemeral fever virus. Mol Cell Probes 38: 31-37 <https://doi.org/10.1016/j.mcp.2017.12.003>
53. Howson E, Soldan A, Webster K, Beer M, Zientara S, Belak S, Sanchez-Vizcaino JM, Van Borm S, King DP, Fowler VL 2017: Technological advances in veterinary diagnostics: opportunities to deploy rapid decentralised tests to detect pathogens affecting livestock. Rev Sci Tech Off Int Epiz 36: 479-498 <https://doi.org/10.20506/rst.36.2.2668>
54. Hu J, Wang T, Wang S, Chen M, Wang M, Mu L, Chen H, Hu X, Liang H, Zhu J, Jiang M 2014: Development of a surface plasmon resonance biosensing approach for the rapid detection of porcine circovirus type2 in sample solutions. PloS One 9: e111292 <https://doi.org/10.1371/journal.pone.0111292>
55. IDEXX BVDV: Ag Point-of-Care Test. Available at https://www.idexx.com/en/livestock/livestock-tests/ruminant-tests/idexx-bvdv-ag-point-care-test/
56. Jain N, Kumar JS, Parida MM, Merwyn S, Rai GP, Agarwal GS 2011: Real-time loop-mediated isothermal amplification assay for rapid and sensitive detection of anthrax spores in spiked soil and talcum powder. World J Microbiol Biotechnol 27: 1407-1413 <https://doi.org/10.1007/s11274-010-0592-3>
57. James HE, Ebert K, McGonigle R, Reid SM, Boonham N, Tomlinson JA, Hutchings GH, Denyer M, Oura CA, Dukes JP, King DP 2010: Detection of African swine fever virus by loop-mediated isothermal amplification. J Virol Methods 164: 68-74 <https://doi.org/10.1016/j.jviromet.2009.11.034>
58. Jeffrey A, Evans TS, Molter C, Howard LL, Ling P, Goldstein T, Gilardi K 2020: Noninvasive sampling for detection of elephant endotheliotropic herpesvirus and genomic DNA in Asian (Elephas maximus) and African (Loxodonta africana) elephants. J Zoo Wildl Med 51: 433-437 <https://doi.org/10.1638/2019-0112>
59. Johann KS, Schürenkamp M, Sibbing U, Lischka C, Pfeiffer H, Vennemann M 2015: Linear-after-the-exponential (LATE)-PCR: improved asymmetric PCR for quantitative DNA-analysis. Forensic Sci Int Genet Suppl Ser 5: e659-e661 <https://doi.org/10.1016/j.fsigss.2015.09.246>
60. Kang B, Oh J, Lee C, Park BK, Park Y, Hong K, Lee K, Cho B, Song D 2007: Evaluation of a rapid immunodiagnostic test kit for rabies virus. J Virol Methods 145: 30-36 <https://doi.org/10.1016/j.jviromet.2007.05.005>
61. Kang SI, Her M, Kim JY, Lee JJ, Lee K, Sung SR, Jung SC 2015: Rapid and specific identification of Brucella abortus using the loop-mediated isothermal amplification (LAMP) assay. Comp Immunol Microbiol Infect Dis 40: 1-6 <https://doi.org/10.1016/j.cimid.2015.03.001>
62. Karthik K, Rathore R, Thomas P, Arun TR, Viswas KN, Agarwal RK, Manjunathachar HV, Dhama K 2014: Loop-mediated isothermal amplification (LAMP) test for specific and rapid detection of Brucella abortus in cattle. Vet Q 34: 174-179 <https://doi.org/10.1080/01652176.2014.966172>
63. Kelly MJ, Betsch J, Wultsch C, Mesa B, Mills LS 2012: Noninvasive sampling for carnivores. In: Carnivore Ecology and Conservation: a Handbook of Techniques, pp. 47-69
64. Kisaakye E, Ario AR, Bainomugisha K, Cossaboom CM, Lowe D, Bulage L, Kadobera D, Sekamatte M, Lubwama B, Tumusiime D, Tusiime P 2018: Outbreak of anthrax associated with handling and eating meat from a cow, Uganda, 2018. Emerg Infect Dis 26: 2799-2806 <https://doi.org/10.3201/eid2612.191373>
65. Koczula KM, Gallotta A 2016: Lateral flow assays. Essays Biochem 60: 111-120
66. Kolton CB, Marston CK, Stoddard RA, Cossaboom C, Salzer JS, Kozel TR, Gates‐Hollingsworth MA, Cleveland CA, Thompson AT, Dalton MF, Yabsley MJ 2019: Detection of Bacillus anthracis in animal tissues using InBios active anthrax detect rapid test lateral flow immunoassay. Lett Appl Microbiol 68: 480-484 <https://doi.org/10.1111/lam.13134>
67. Lagare A, Fall G, Ibrahim A, Ousmane S, Sadio B, Abdoulaye M, Alhassane A, Mahaman AE, Issaka B, Sidikou F, Zaneidou M 2019: First occurrence of Rift Valley fever outbreak in Niger, 2016. Vet Med Sci 5: 70-78 <https://doi.org/10.1002/vms3.135>
68. Li H, Li K, Bi Z, Gu J, Song D, Lei D, Luo S, Huang D, Wu Q, Ding Z, Wang L 2019: Development of a reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay for the detection of porcine pegivirus. J Virol Methods 270: 59-65 <https://doi.org/10.1016/j.jviromet.2019.04.019>
69. Li J, Macdonald J, von Stetten F 2020: Correction: Review: a comprehensive summary of a decade development of the recombinase polymerase amplification. Analyst 145: 1950-1960 <https://doi.org/10.1039/C9AN90127B>
70. Li Q, Zhou QF, Xue CY, Ma JY, Zhu DZ, Cao YC 2009: Rapid detection of porcine reproductive and respiratory syndrome virus by reverse transcription loop-mediated isothermal amplification assay. J Virol Methods 155: 55-60 <https://doi.org/10.1016/j.jviromet.2008.09.012>
71. Liu H, Liu ZJ, Jing J, Ren JQ, Liu YY, Guo HH, Fan M, Lu HJ, Jin NY 2012: Reverse transcription loop-mediated isothermal amplification for rapid detection of Japanese encephalitis virus in swine and mosquitoes. Vector Borne Zoonotic Dis 12: 1042-1052 <https://doi.org/10.1089/vbz.2012.0991>
72. Lobato IM, O’Sullivan CK 2018: Recombinase polymerase amplification: basics, applications and recent advances. Trends Anal Chem 98: 19-35 <https://doi.org/10.1016/j.trac.2017.10.015>
73. Lung O, Fisher M, Erickson A, Nfon C, Ambagala A 2019: Fully automated and integrated multiplex detection of high consequence livestock viral genomes on a microfluidic platform. Transbound Emerg Dis 66: 144-155 <https://doi.org/10.1111/tbed.12994>
74. Maan S, Maan NS, Batra K, Kumar A, Gupta A, Rao PP, Hemadri D, Reddy YN, Guimera M, Belaganahalli MN, Mertens PP 2016: Reverse transcription loop-mediated isothermal amplification assays for rapid identification of eastern and western strains of bluetongue virus in India. J Virol Methods 234: 65-74 <https://doi.org/10.1016/j.jviromet.2016.04.002>
75. Maclachlan NJ, Guthrie AJ 2010: Re-emergence of bluetongue, African horse sickness, and other orbivirus diseases. Vet Res 41: 35 <https://doi.org/10.1051/vetres/2010007>
76. Mahapatra M, Howson E, Fowler V, Batten C, Flannery J, Selvaraj M, Parida S 2019: Rapid detection of peste des petits ruminants virus (PPRV) nucleic acid using a novel low-cost reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for future use in nascent PPR eradication programme. Viruses 11: 699 <https://doi.org/10.3390/v11080699>
77. Mainelis G 2020: Bioaerosol sampling: Classical approaches, advances, and perspectives. Aerosol Sci Technol 54: 496-519 <https://doi.org/10.1080/02786826.2019.1671950>
78. Männistö HE 2018: Collection of oral fluid samples from wild boar in the field conditions to detect African swine fever virus (ASFV) (Master’s Degree thesis, Eesti Maaülikool).
79. Marquardt O, Straub OC, Ahl R, Haas B 1995: Detection of foot-and-mouth disease virus in nasal swabs of asymptomatic cattle by RT-PCR within 24 hours. J Virol Methods 53: 255-261 <https://doi.org/10.1016/0166-0934(95)00015-M>
80. McElwain TF, Thumbi SM 2017: Animal pathogens and their impact on animal health, the economy, food security, food safety and public health. Rev Sci Tech (International Office of Epizootics) 36: 423-433 <https://doi.org/10.20506/rst.36.2.2663>
81. Mengüllüoğlu D, Fickel J, Hofer H, Förster DW 2019: Non-invasive faecal sampling reveals spatial organization and improves measures of genetic diversity for the conservation assessment of territorial species: Caucasian lynx as a case species. PloS One 14: e0216549 <https://doi.org/10.1371/journal.pone.0216549>
82. Miao F, Zhang J, Li N, Chen T, Wang L, Zhang F, Mi L, Zhang J, Wang S, Wang Y, Zhou X 2019: Rapid and sensitive recombinase polymerase amplification combined with lateral flow strip for detecting African swine fever virus. Front Microbiol 10: 1004 <https://doi.org/10.3389/fmicb.2019.01004>
83. Montagnese C, Barattini P, Giusti A, Balka G, Bruno U, Bossis I, Gelasakis A, Bonasso M, Philmis P, Dénes L, Peransi S 2019: A diagnostic device for in-situ detection of swine viral diseases: The SWINOSTICS project. Sensors 19: 407 <https://doi.org/10.3390/s19020407>
84. Moore MD, Jaykus LA 2017: Recombinase polymerase amplification: a promising point-ofcare detection method for enteric viruses. Future Virol 12: 421-429 <https://doi.org/10.2217/fvl-2017-0034>
85. Mosaad AA, Abdel-Hamed AS, Fathalla SI, Ghazy AA, Elballal S, Elbagory A, Mahboub H, Gaafar K, Elgayar KE, Mohamed AS, Amin AI 2012: Sensitive and specific diagnostic assay for detection of tuberculosis in cattle. Glob Vet 8: 555-564
86. Mouchantat S, Globig A, Böhle W, Petrov A, Strebelow HG, Mettenleiter TC, Depner K 2014a: Novel rope-based sampling of classical swine fever shedding in a group of wild boar showing low contagiosity upon experimental infection with a classical swine fever field strain of genotype 2.3. Vet Microbiol 170: 425-429 <https://doi.org/10.1016/j.vetmic.2014.03.004>
87. Mouchantat S, Haas B, Böhle W, Globig A, Lange E, Mettenleiter TC, Depner K 2014b: Proof of principle: Non-invasive sampling for early detection of foot-and-mouth disease virus infection in wild boar using a rope-in-a-bait sampling technique. Vet Microbiol 172: 329-333 <https://doi.org/10.1016/j.vetmic.2014.05.021>
88. Mustafa NH, Allaudin ZN, Honari P, Toung OP, Lila MM 2014: Detection of classical swine fever virus by a surface plasmon resonance assay. Virol Mycol 3: 136
89. Mwanandota JJ, Macharia M, Ngeleja CM, Sallu RS, Yongolo MG, Mayenga C, Holton TA 2018: Validation of a diagnostic tool for the diagnosis of lumpy skin disease. Vet Dermatol 29: 532-e178 <https://doi.org/10.1111/vde.12690>
90. Nagamine K, Hase T, Notomi T 2002: Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes 16: 223-229 <https://doi.org/10.1006/mcpr.2002.0415>
91. Neethirajan S 2017: Recent advances in wearable sensors for animal health management. Sens Biosensing Res 12: 15-29 <https://doi.org/10.1016/j.sbsr.2016.11.004>
92. Neethirajan S, Tuteja SK, Huang ST, Kelton D 2017: Recent advancement in biosensors technology for animal and livestock health management. Biosens Bioelectron 98: 398-407 <https://doi.org/10.1016/j.bios.2017.07.015>
93. Nemoto M, Schofield W, Cullinane A 2019: The first detection of equine coronavirus in adult horses and foals in Ireland. Viruses 11: 946 <https://doi.org/10.3390/v11100946>
94. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T 2000: Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28: e63 <https://doi.org/10.1093/nar/28.12.e63>
95. Oem JK, Ferris NP, Lee KN, Joo YS, Hyun BH, Park JH 2009: Simple and rapid lateral-flow assay for the detection of foot-and-mouth disease virus. Clin Vaccine Immunol 16: 1660-1664 <https://doi.org/10.1128/CVI.00213-09>
96. OIE 2019a: Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. Available at https://www.oie.int/standard-setting/terrestrial-manual/access-online/
97. OIE 2019b: Foot‐and‐mouth disease (Infection with Foot and Mouth Disease Virus) [Chapter 3.1. 8]. Manual of diagnostic tests and vaccines for terrestrial animals
98. OIE 2019c: Peste des petits ruminants (Infection with Peste des petits ruminants Virus) [Chapter 3.7.9]. Manual of diagnostic tests and vaccines for terrestrial animals
99. Oreshkova N, Molenaar RJ, Vreman S, Harders F, Munnink BB, Hakze-van Der Honing RW, Gerhards N, Tolsma P, Bouwstra R, Sikkema RS, Tacken MG 2020: SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. Euro Surveill 25: 2001005 <https://doi.org/10.2807/1560-7917.ES.2020.25.23.2001005>
100. Otagiri Y, Asai T, Okada M, Uto T, Yazawa S, Hirai H, Shibata I, Sato S 2005: Detection of Mycoplasma hyopneumoniae in lung and nasal swab samples from pigs by nested PCR and culture methods. J Vet Sci 67: 801-805 <https://doi.org/10.1292/jvms.67.801>
101. Parida M, Posadas G, Inoue S, Hasebe F, Morita K 2004: Real-time reverse transcription loop-mediated isothermal amplification for rapid detection of West Nile virus. J Clin Microbiol 42: 257-263 <https://doi.org/10.1128/JCM.42.1.257-263.2004>
102. Parida S, Selvaraj M, Gubbins S, Pope R, Banyard A, Mahapatra M 2019: Quantifying levels of peste des petits ruminants (PPR) virus in excretions from experimentally infected goats and its importance for nascent PPR eradication programme. Viruses 11: 249 <https://doi.org/10.3390/v11030249>
103. Park JY, Park S, Park YR, Kang DY, Kim EM, Jeon HS, Kim JJ, Kim WI, Lee KT, Kim SH, Lee KK 2016: Reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay for the visual detection of European and North American porcine reproductive and respiratory syndrome viruses. J Virol Methods 237: 10-13 <https://doi.org/10.1016/j.jviromet.2016.08.008>
104. Park YR, Kim HR, Kim SH, Lee KK, Lyoo YS, Yeo SG, Park CK 2018: Loop-mediated isothermal amplification assay for the rapid and visual detection of novel porcine circovirus 3. J Virol Methods 253: 26-30 <https://doi.org/10.1016/j.jviromet.2017.12.006>
105. Piepenburg O, Williams CH, Stemple DL, Armes NA 2006: DNA detection using recombination proteins. PLoS Biol 4: e204 <https://doi.org/10.1371/journal.pbio.0040204>
106. Pierce KE, Mistry R, Reid SM, Bharya S, Dukes JP, Hartshorn C, King DP, Wangh LJ 2010: Design and optimization of a novel reverse transcription linear‐after‐the‐exponential PCR for the detection of foot‐and‐mouth disease virus. J Appl Microbiol 109: 180-189 <https://doi.org/10.1111/j.1365-2672.2009.04640.x>
107. Pierce KE, Sanchez JA, Rice JE, Wangh LJ 2005: Linear-After-The-Exponential (LATE)-PCR: primer design criteria for high yields of specific single-stranded DNA and improved real-time detection. Proc Natl Acad Sci 102: 8609-8614 <https://doi.org/10.1073/pnas.0501946102>
108. Plowright W, Ferris RD 1962: Studies with rinderpest virus in tissue culture: the use of attenuated culture virus as a vaccine for cattle. Res Vet Sci 3: 172-182 <https://doi.org/10.1016/S0034-5288(18)34916-6>
109. Poh MK, Ma M, Nguyen TT, Su YC, Pena EM, Ogden BE, Gray GC 2017: Bioaerosol sampling for airborne respiratory viruses in an experimental medicine pig handling facility, Singapore. Southeast Asian J Trop Med Public Health 48: 828-835
110. Poonati R, Mallepaddi PC, Punati RD, Maity SN, Alapati KS, Polavarapu KK, Polavarapu R 2020: Development of rapid, sensitive and in-expensive point of care diagnostic method for brucellosis in dairy cattle at resource-limited areas. Indian J Public Health Res Dev 11: 566-572
111. Postel A, Pérez LJ, Perera CL, Schmeiser S, Meyer D, Meindl-Boehmer A, Rios L, Austermann-Busch S, Frias-Lepoureau MT, Becher P 2015: Development of a new LAMP assay for the detection of CSFV strains from Cuba: a proof-of-concept study. Arch Virol 160: 1435-1448 <https://doi.org/10.1007/s00705-015-2407-1>
112. Prickett JR 2009: Detection of viral pathogens of swine using oral fluid specimens. Graduate Theses and Dissertations, Iowa State University, 11013. Available at https://lib.dr.iastate.edu/etd/11013
113. Prickett JR, Zimmerman JJ 2010: The development of oral fluid-based diagnostics and applications in veterinary medicine. Anim Health Res Rev 11: 207-216 <https://doi.org/10.1017/S1466252310000010>
114. Purse BV, Mellor PS, Rogers DJ, Samuel AR, Mertens PP, Baylis M 2005: Climate change and the recent emergence of bluetongue in Europe. Nat Rev Microbiol 3: 171-181 <https://doi.org/10.1038/nrmicro1090>
115. Pusterla N, Vin R, Leutenegger C, Mittel, LD, Divers TJ 2016: Equine coronavirus infection. In: Emerging and re-emerging infectious diseases of livestock, pp. 121-132
116. Qin L, Nan W, Wang Y, Zhang Y, Tan P, Chen Y, Mao K, Chen Y 2019: A novel approach for detection of Brucella using a real-time recombinase polymerase amplification assay. Mol Cell Probes 48: 101451 <https://doi.org/10.1016/j.mcp.2019.101451>
117. Raikwar S, Prajapati YK, Srivastava, DK, Maurya JB, Saini JP 2020: Detection of leptospirosis bacteria in rodent urine by surface plasmon resonance sensor using graphene. Photonic Sensors 11: 305-313 <https://doi.org/10.1007/s13320-020-0587-2>
118. Rajkhowa TK, Jagan Mohanarao G, Gogoi A, Hauhnar L, Isaac L 2015: Porcine reproductive and respiratory syndrome virus (PRRSV) from the first outbreak of India shows close relationship with the highly pathogenic variant of China. Vet Q 35: 186-193 <https://doi.org/10.1080/01652176.2015.1066043>
119. Rajko-Nenow P, Flannery J, Arnold H, Howson EL, Darpel K, Stedman A, Corla A, Batten C 2019: A rapid RT-LAMP assay for the detection of all four lineages of Peste des Petits Ruminants Virus. J Virol Methods 274: 113730 <https://doi.org/10.1016/j.jviromet.2019.113730>
120. Rebollo B, Pérez T, Camuńas A, Pérez-Ramírez E, Llorente F, Sánchez-Seco MP, Jiménez-Clavero MÁ, Venteo Á 2018: A monoclonal antibody to DIII E protein allowing the differentiation of West Nile virus from other flaviviruses by a lateral flow assay. J Virol Methods 260: 41-44 <https://doi.org/10.1016/j.jviromet.2018.06.016>
121. Roeder P, Mariner J, Kock R 2013: Rinderpest: the veterinary perspective on eradication. Philos Trans R Soc Lond B Biol Sci 368: 20120139 <https://doi.org/10.1098/rstb.2012.0139>
122. Rohr JR, Barrett CB, Civitello DJ, Craft ME, Delius B, DeLeo GA, Hudson PJ, Jouanard N, Nguyen KH, Ostfeld RS, Remais JV 2019: Emerging human infectious diseases and the links to global food production. Nat Sustain 2: 445-456 <https://doi.org/10.1038/s41893-019-0293-3>
123. Sailleau C, Breard E, Viarouge C, Vitour D, Romey A, Garnier A, Fablet A, Lowenski S, Gorna K, Caignard G, Pagneux C 2017: Re‐emergence of bluetongue virus serotype 8 in France, 2015. Transbound Emerg Dis 64: 998-1000 <https://doi.org/10.1111/tbed.12453>
124. Saitou Y, Kobayashi Y, Hirano S, Mochizuki N, Itou T, Ito FH, Sakai T 2010: A method for simultaneous detection and identification of Brazilian dog-and vampire bat-related rabies virus by reverse transcription loop-mediated isothermal amplification assay. J Virol Methods 168: 13-17 <https://doi.org/10.1016/j.jviromet.2010.04.008>
125. Sajid M, Kawde AN, Daud M 2015: Designs, formats and applications of lateral flow assay: A literature review. J Saudi Chem Soc 19: 689-705 <https://doi.org/10.1016/j.jscs.2014.09.001>
126. Sambandam R, Angamuthu R, Kanagaraj V, Kathaperumal K, Chothe SK, Nissly RH, Barry RM, Jayarao BM, Kuchipudi SV 2017: An immuno-chromatographic lateral flow assay (LFA) for rapid on-the-farm detection of classical swine fever virus (CSFV). Arch Virol 162: 3045-3050 <https://doi.org/10.1007/s00705-017-3464-4>
127. Sanchez JA, Pierce KE, Rice JE, Wangh LJ 2004: Linear-After-The-Exponential (LATE)–PCR: An advanced method of asymmetric PCR and its uses in quantitative real-time analysis. Proc Natl Acad Sci 101: 1933-1938 <https://doi.org/10.1073/pnas.0305476101>
128. Sastre P, Gallardo C, Monedero A, Ruiz T, Arias M, Sanz A, Rueda P 2016: Development of a novel lateral flow assay for detection of African swine fever in blood. BMC Vet Res 12: 206 <https://doi.org/10.1186/s12917-016-0831-4>
129. Schallig HD, Cardoso L, Hommers M, Kroon N, Belling G, Rodrigues M, Semiăo-Santos SJ, Vetter H 2004: Development of a dipstick assay for detection of Leishmania-specific canine antibodies. J Clin Microbiol 42: 193-197 <https://doi.org/10.1128/JCM.42.1.193-197.2004>
130. Schvartz G, Farnoushi Y, Berkowitz A, Edery N, Hahn S, Steinman A, Lublin A, Erster O 2020: Molecular characterization of the re-emerging West Nile virus in avian species and equids in Israel, 2018, and pathological description of the disease. Parasit Vectors 13: 528 <https://doi.org/10.1186/s13071-020-04399-2>
131. Segal A, Wong DT 2008: Salivary diagnostics: enhancing disease detection and making medicine better. Eur J Dent Educ 12: 22-29
132. Segalés J, Puig M, Rodon J, Avila-Nieto C, Carrillo J, Cantero G, Terrón MT, Cruz S, Parera M, Noguera-Julián M, Izquierdo-Useros N 2020: Detection of SARS-CoV-2 in a cat owned by a COVID-19 affected patient in Spain. Proc Natl Acad Sci 117: 24790-24793 <https://doi.org/10.1073/pnas.2010817117>
133. Senthilkumaran C, Yang M, Bittner H, Ambagala A, Lung O, Zimmerman J, Giménez-Lirola LG, Nfon C 2017: Detection of genome, antigen, and antibodies in oral fluids from pigs infected with foot-and-mouth disease virus. Can J Vet Res 81: 82-90
134. Shalaby MA, El-Deeb A, El-Tholoth M, Hoffmann D, Czerny CP, Hufert FT, Weidmann M, Abd El Wahed A 2016: Recombinase polymerase amplification assay for rapid detection of lumpy skin disease virus. BMC Vet Res 12: 244 <https://doi.org/10.1186/s12917-016-0875-5>
135. Sharma S, Zapatero-Rodríguez J, Estrela P, O’Kennedy R 2015: Point-of-care diagnostics in low resource settings: present status and future role of microfluidics. Biosensors 5: 577-601 <https://doi.org/10.3390/bios5030577>
136. Shirzadfar H, Khanahmadi M 2018: Review on structure, function and applications of microfluidic systems. Int J Biosen Bioelectron 4: 263-265
137. Silva SJ, Pardee K, Pena L 2020: Loop-mediated isothermal amplification (LAMP) for the diagnosis of Zika virus: a review. Viruses 12: 19 <https://doi.org/10.3390/v12010019>
138. Singer JM, Plotz CM 1956: The latex fixation test: I. Application to the serologic diagnosis of rheumatoid arthritis. Am J Med 21: 888-892 <https://doi.org/10.1016/0002-9343(56)90103-6>
139. Sit TH, Brackman CJ, Ip SM, Tam KW, Law PY, To EM, Yu VY, Sims LD, Tsang DN, Chu DK, Perera RA, 2020: Infection of dogs with SARS-CoV-2. Nature 14: 1-6
140. Skottrup PD, Nicolaisen M, Justesen AF 2008: Towards on-site pathogen detection using antibody-based sensors. Biosens Bioelectron 24: 339-348 <https://doi.org/10.1016/j.bios.2008.06.045>
141. Sorge US, Kurnick S, Sreevatsan S 2013: Detection of Mycobacterium avium subspecies paratuberculosis in the saliva of dairy cows: a pilot study. Vet Microbiol 164: 383-386 <https://doi.org/10.1016/j.vetmic.2013.02.021>
142. Stella E, Mari L, Gabrieli J, Barbante C, Bertuzzo E 2020: Permafrost dynamics and the risk of anthrax transmission: a modelling study. Sci Rep 10: 16460 <https://doi.org/10.1038/s41598-020-72440-6>
143. Stewart LD, Tort N, Meakin P, Argudo JM, Nzuma R, Reid N, Delahay RJ, Ashford R, Montgomery WI, Grant IR 2017: Development of a novel immunochromatographic lateral flow assay specific for Mycobacterium bovis cells and its application in combination with immunomagnetic separation to test badger faeces. BMC Vet Res 13: 131 <https://doi.org/10.1186/s12917-017-1048-x>
144. Sudhakar SB, Mishra N, Kalaiyarasu S, Jhade SK, Hemadri D, Sood R, Bal GC, Nayak MK, Pradhan SK, Singh VP 2020: Lumpy skin disease (LSD) outbreaks in cattle in Odisha state, India in August 2019: Epidemiological features and molecular studies. Transbound Emerg Dis 67: 2408-2422 <https://doi.org/10.1111/tbed.13579>
145. Sun D, Wang J, Wu R, Wang C, He X, Zheng J, Yang H 2010: Development of a novel LAMP diagnostic method for visible detection of swine Pasteurella multocida. Vet Res Commun 34: 649-657 <https://doi.org/10.1007/s11259-010-9433-y>
146. Tasioudi KE, Antoniou SE, Iliadou P, Sachpatzidis A, Plevraki E, Agianniotaki EI, Fouki C, Mangana‐Vougiouka O, Chondrokouki E, Dile C 2016: Emergence of lumpy skin disease in Greece. Transbound Emerg Dis 63: 260-265 <https://doi.org/10.1111/tbed.12497>
147. Thompson GM, Jess S, Murchie AK 2012: A review of African horse sickness and its implications for Ireland. Ir Vet J 65: 1-8 <https://doi.org/10.1186/2046-0481-65-9>
148. Tu PA, Shiu JS, Lai FY, Chen YH, Shiau JW 2018: A recombinase polymerase amplification lateral flow dipstick for field diagnosis of bovine leukemia virus infection and its effectiveness compared to iiPCR and ELISA. J Antivir Antiretrovir 10: 35-42 <https://doi.org/10.4172/1948-5964.1000178>
149. Upadhyay L, Chaturvedi VK, Gupta PK, Sunita SC, Sumithra TG, Prusty BR, Yadav AK 2020: Development of a visible loop mediated isothermal amplification assay for rapid detection of Bacillus anthracis. Biologicals 69: 59-65 <https://doi.org/10.1016/j.biologicals.2020.11.004>
150. Vashist SK 2017: Point-of-care diagnostics: recent advances and trends. Biosensors (Basel) 7: 62 <https://doi.org/10.3390/bios7040062>
151. Venkatesan G, Bhanuprakash V, Balamurugan V, Kumar A, Bora DP, Reveniah Y, Arya S, Madhavan A, Muthuchelvan D, Pandey AB 2016: Simple and rapid visual detection methods of orf virus by B2L gene-based loop-mediated isothermal amplification assay. Adv Anim Vet Sci 4: 152-159 <https://doi.org/10.14737/journal.aavs/2016/4.3.153.160>
152. Venkatesan G, Bhanuprakash V, Balamurugan V, Singh RK, Pandey AB 2012: Development of loop-mediated isothermal amplification assay for specific and rapid detection of camelpox virus in clinical samples. J Virol Methods 183: 34-39 <https://doi.org/10.1016/j.jviromet.2012.03.019>
153. Venkatesan G, Kushwaha A, Kumar A, Poulinlu G, Karki M, Sasikumar P 2020: Loop mediated isothermal amplification system (LAMP): A comprehensive review with special reference to veterinary medicine. J Vet Sci Med Diagn 9: 1-11
154. Wang H, Cong F, Zeng F, Lian Y, Liu X, Luo M, Guo P, Ma J 2018a: Development of a real time reverse transcription loop-mediated isothermal amplification method (RT-LAMP) for detection of a novel swine acute diarrhea syndrome coronavirus (SADS-CoV). J Virol Methods 260: 45-48 <https://doi.org/10.1016/j.jviromet.2018.06.010>
155. Wang HM, Zhao GM, Hou PL, Yu L, He CQ, He HB 2018b: Rapid detection of foot-and-mouth disease virus using reverse transcription recombinase polymerase amplification combined with a lateral flow dipstick. J Virol Methods 261: 46-50 <https://doi.org/10.1016/j.jviromet.2018.07.011>
156. Wang JC, Yuan WZ, Han QA, Wang JF, Liu LB 2017: Reverse transcription recombinase polymerase amplification assay for the rapid detection of type 2 porcine reproductive and respiratory syndrome virus. J Virol Methods 243: 55-60 <https://doi.org/10.1016/j.jviromet.2017.01.017>
157. Wang K, Shao H, Pei Z, Hu G 2015: Rapid detection of contagious ecthyma by loop-mediated isothermal amplification and epidemiology in Jilin Province China. J Vet Sci 15: 0340
158. Wang X, Bailey ES, Qi X, Yu H, Bao C, Gray GC 2020: Bioaerosol sampling at a live animal market in Kunshan (China): A noninvasive approach for detecting emergent viruses. Open Forum Infect 7: ofaa134
159. Wang Z, Yang PP, Zhang YH, Tian KY, Bian CZ, Zhao J 2019: Development of a reverse transcription recombinase polymerase amplification combined with lateral‐flow dipstick assay for avian influenza H9N2 HA gene detection. Transbound. Emerg Dis 66: 546-551 <https://doi.org/10.1111/tbed.13063>
160. Yang Y, Qin X, Zhang X, Zhao Z, Zhang W, Zhu X, Cong G, Li Y, Zhang Z 2017a: Development of real-time and lateral flow dipstick recombinase polymerase amplification assays for rapid detection of goatpox virus and sheeppox virus. Virol J 14: 1-8
161. Yang Y, Qin X, Sun Y, Cong G, Li Y, Zhang Z 2017b: Development of isothermal recombinase polymerase amplification assay for rapid detection of porcine circovirus type 2. Biomed Res Int 8403642: 1-8
162. Yang Y, Qin X, Song Y, Zhang W, Hu G, Dou Y, Li Y, Zhang Z 2017c: Development of real-time and lateral flow strip reverse transcription recombinase polymerase Amplification assays for rapid detection of peste des petits ruminants virus. Virol J 14: 1-10
163. Yang Z, Xu G, Reboud J, Ali SA, Kaur G, McGiven J, Boby N, Gupta PK, Chaudhuri P, Cooper JM 2018: Rapid veterinary diagnosis of bovine reproductive infectious diseases from semen using paper-origami DNA microfluidics. ACS sensors 3: 403-409 <https://doi.org/10.1021/acssensors.7b00825>
164. Yoo H, Shin J, Sim J, Cho H, Hong S 2020: Reusable surface plasmon resonance biosensor chip for the detection of H1N1 influenza virus. Biosens Bioelectron 168: 112561 <https://doi.org/10.1016/j.bios.2020.112561>
165. Yu X, Shi L, Lv X, Yao W, Cao M, Yu H, Wang X, Zheng S 2015: Development of a real-time reverse transcription loop-mediated isothermal amplification method for the rapid detection of porcine epidemic diarrhea virus. Virol J 12: 1-8
166. Zemanova MA 2019: Poor implementation of non-invasive sampling in wildlife genetics studies. Rethinking Ecology 4: 119 <https://doi.org/10.3897/rethinkingecology.4.32751>
167. Zhang F, Ye Y, Song D, Guo N, Peng Q, Li A, Zhou X, Chen Y, Zhang M, Huang D, Tang Y 2017: A simple and rapid identification method for newly emerged porcine Deltacoronavirus with loop-mediated isothermal amplification. Biol Res 50: 1-7
168. Zhang J, Kelly P, Li J, Xu C, Wang C 2015: Molecular detection of Theileria spp. in livestock on five Caribbean islands. BioMed Res Int 2015: 624728
169. Zhang J, Zhang GH, Yang L, Huang R, Zhang Y, Jia K, Yuan W, Li SJ 2011: Development of a loop-mediated isothermal amplification assay for the detection of Mycobacterium bovis. Vet J 187: 393-396 <https://doi.org/10.1016/j.tvjl.2010.01.001>
170. Zhang JX, Hoshino K 2018: Molecular sensors and nanodevices: principles, designs and applications in biomedical engineering. Academic Press, Cambridge, 600 p.
171. Zhang X, Li Y, Xiao S, Yang X, Chen X, Wu P, Song J, Ma Z, Cai Z, Jiang M, Zhang Y 2019: High-frequency mutation and recombination are responsible for the emergence of novel porcine reproductive and respiratory syndrome virus in northwest China. Arch Virol 164: 2725-2733 <https://doi.org/10.1007/s00705-019-04373-z>
172. Zhao G, He H, Wang H 2019: Use of a recombinase polymerase amplification commercial kit for rapid visual detection of Pasteurella multocida. BMC Vet Res 15: 154 <https://doi.org/10.1186/s12917-019-1889-6>
173. Zhao G, Hou P, Huan Y, He C, Wang H, He H 2018: Development of a recombinase polymerase amplification combined with a lateral flow dipstick assay for rapid detection of the Mycoplasma bovis. BMC Vet Res 14: 412 <https://doi.org/10.1186/s12917-018-1703-x>
174. Zheng S, Wu X, Shi J, Peng Z, Gao M, Xin C, Liu Y, Wang S, Xu S, Han H, Yu J 2018: Rapid specific and visible detection of porcine circovirus type 3 using loop‐mediated isothermal amplification (LAMP). Transbound Emerg Dis 65: 597-601 <https://doi.org/10.1111/tbed.12835>
175. Zhou J, Wu J, Zeng X, Huang G, Zou L, Song Y, Gopinath D, Zhang X, Kang M, Lin J, Cowling BJ 2016: Isolation of H5N6, H7N9 and H9N2 avian influenza A viruses from air sampled at live poultry markets in China, 2014 and 2015. Euro Surveill 21: 30331 <https://doi.org/10.2807/1560-7917.ES.2016.21.35.30331>
front cover
  • ISSN 0001-7213 (printed)
  • ISSN 1801-7576 (electronic)

Current issue

Archive