Acta Vet. Brno 2022, 91: 17-34
https://doi.org/10.2754/avb202291010017
Point of care diagnostics and non-invasive sampling strategy: a review on major advances in veterinary diagnostics
References
1. 2007: The first outbreak of camelpox in Syria. J Vet Sci 69: 541-543
< O, Nishikawa H, Meyer H https://doi.org/10.1292/jvms.69.541>
2. Anderson J, McKay JA, Butcher RN 1990: Seromonitoring of rinderpest throughout Africa: phase one. In: Proceedings of the final research coordination meeting of the IAEA rinderpest control projects, Côte d’Ivoire, pp. 19-23
3. 2012: A SPR aptasensor for detection of avian influenza virus H5N1. Sensors 12: 12506-12518
< H, Wang R, Hargis B, Lu H, Li Y https://doi.org/10.3390/s120912506>
4. 2018: Molecular surveillance of respiratory viruses with bioaerosol sampling in an airport. Trop Dis Travel Med Vaccines 4: 1-5
< ES, Choi JY, Zemke J, Yondon M, Gray GC https://doi.org/10.1186/s40794-018-0071-7>
5. Balogh EP, Miller BT, Ball JR 2015: Committee on Diagnostic Error in Health Care; Board on Health Care Services; Institute of Medicine; Improving Diagnosis in Health Care. Washington, D.C., USA, National Academies Press
6. Baneth G 2015: Invasive and non-invasive diagnostic techniques for pet infectious diseases. In: Proceedings of the 40th World Small Animal Veterinary Association Congress, Bangkok, Thailand, 15-18 May, pp. 450-451. World Small Animal Veterinary Association
7. 2014: Development and testing of a field diagnostic assay for peste des petits ruminants virus. Transbound Emerg Dis 61: 390-396
< J, Fishbourne E, Couacy‐Hyman E, Abubakar M, Jones BA, Frost L, Herbert R, Chibssa TR, Van’t Klooster G, Afzal M, Ayebazibwe C https://doi.org/10.1111/tbed.12266>
8. 2019: Optimization and evaluation of a non-invasive tool for peste des petits ruminants surveillance and control. Sci Rep 9: 4742
< A, Kwiatek O, Belfkhi S, Mounier L, Parida S, Mahapatra M, Caron A, Chubwa CC, Keyyu J, Kock R, Jones BA, Libeau G https://doi.org/10.1038/s41598-019-41232-y>
9. 2019: Assessing the value of PCR assays in oral fluid samples for detecting African swine fever, classical swine fever, and foot-and-mouth disease in US swine. PloS One 14: e0219532
< O, Remmenga M, Gustafson L, Johnson K, His D, Antognoli MC https://doi.org/10.1371/journal.pone.0219532>
10. 2015: Loop mediated Isothermal Amplification assay (LAMP) based detection of Pasteurella multocida in cases of haemorrhagic septicaemia and fowl cholera. Vet Ital 51: 115-121
MP, Bhanderi BB, Roy A
11. Biogal Galed Labs 2015: Immunocomb. Bovine Neospora Antibody Test Kit. Available at http://www.agrolabo.it/wp-content/uploads/immunoc-bovine-neospora.pdf
12. Biswas S, Bhatt S, Paul S, Modi S, Ghosh T, Habib B, Nigam P, Talukdar G, Pandav B, Mondol S 2019: A practive faeces collection protocol for multidisciplinary research in wildlife science. BioRxiv: 537803
13. Bragheri F, Vázquez RM, Osellame R 2020: Microfluidics. In: Three-Dimensional Microfabrication Using Two-Photon Polymerization, William Andrew Publishing, pp. 493-526
14. 2016: Opportunities and challenges for the application of microfluidic technologies in point-of-care veterinary diagnostics. Mol Cell Probes 30: 331-341
< V, Wells B, Kersaudy-Kerhoas M, Shu W, Burgess ST https://doi.org/10.1016/j.mcp.2016.07.004>
15. 2018: A hybrid paper-based microfluidic platform toward veterinary P-ELISA. Sens Actuators B Chem 273: 536-542
< V, Burgess S, Shu W https://doi.org/10.1016/j.snb.2018.06.075>
16. 2019: Development and validation of a pen side test for Rift Valley fever. PLOS Negl Trop Dis 13: e0007700
< C, Pédarrieu A, Juremalm M, Jansen Van Vuren P, Brun A, Ould El Mamy AB, Héraud JM, Filippone C, Ravalohery JP, Chaabihi H, Albina E https://doi.org/10.1371/journal.pntd.0007700>
17. 2018: Simple strategy for rapid and sensitive detection of avian influenza A H7N9 virus based on intensity-modulated SPR biosensor and new generated antibody. Anal Chem 90: 1861-1869
< YF, Wang WH, Hong YW, Yuan RY, Chen KH, Huang YW, Lu PL, Chen YH, Chen YM, Su LC, Wang SF https://doi.org/10.1021/acs.analchem.7b03934>
18. 2011: Detection of foot-and-mouth disease virus RNA by reverse transcription loop-mediated isothermal amplification. Virol J 8: 510
< HT, Zhang J, Liu YS, Liu XT https://doi.org/10.1186/1743-422X-8-510>
19. 2008: Rapid detection of porcine circovirus type 2 by loop-mediated isothermal amplification. J Virol Methods 149: 264-268
< HT, Zhang J, Sun DH, Chu YF, Cai XP, Liu XT, Luo XN, Liu Q, Liu YS https://doi.org/10.1016/j.jviromet.2008.01.023>
20. 2014: Development of a loop-mediated isothermal amplification assay combined with a lateral flow dipstick for rapid and simple detection of classical swine fever virus in the field. J Virol Methods 197: 14-18
< VK, Luo Y, Widén F, Qiu HJ, Shan H, Belák S, Liu L https://doi.org/10.1016/j.jviromet.2013.11.013>
21. 2018: Bioaerosol sampling for respiratory viruses in Singapore’s mass rapid transit network. Sci Rep 8: 1-7
KK, Nguyen TT, Yadana S, Hansen-Estruch C, Lindsley WG, Gray GC
22. 2012: Detecting viruses by using salivary diagnostics. J Am Dent Assoc 143: 12S-18S
< PL, Abrams WR, Malamud D https://doi.org/10.14219/jada.archive.2012.0338>
23. 2017: Challenges of the nano–bio interface in lateral flow and dipstick immunoassays. Trends Biotechnol 35: 1169-1180
< H, Bosch I, Gehrke L, Hamad-Schifferli K https://doi.org/10.1016/j.tibtech.2017.09.001>
24. Dib LV, Palmer JP, Bastos OM, Uchôa CM, Amendoeira MR, Bastos AC 2019: Noninvasive Sampling: Monitoring of Wild Carnivores and Their Parasites. In: Protected Areas, National Parks and Sustainable Future, IntechOpen
25. 2016: Rope-based oral fluid sampling for early detection of classical swine fever in domestic pigs at group level. BMC Vet Res 13: 1-6
< K, Tucakov A, Engel T, Wirtz S, Depner K, Globig A, Kammerer R, Mouchantat S https://doi.org/10.1186/s12917-016-0930-2>
26. 2013: Emerging & re-emerging infections in India: an overview. Indian J Med Res 138: 19-31
T, Jain SK, Sharma A, Kumar A, Narain JP
27. 2018: Application of biosensors to detection of epidemic diseases in animals. Res Vet Sci 118: 444-448
< X, Zhou J https://doi.org/10.1016/j.rvsc.2018.04.011>
28. 2007: Detection of viruses in nasal swab samples from horses with acute, febrile, respiratory disease using virus isolation, polymerase chain reaction and serology. Aust Vet J 85: 46-50
< K, Black WD, Ficorilli N, Hartley CA, Studdert MJ https://doi.org/10.1111/j.1751-0813.2006.00096.x>
29. 2016: Occurrence and spread of bovine papular stomatitis with different types of lesions among Japanese black calves suspected of having foot-and-mouth disease. J Vet Med Sci 69: 323-328
S, Nakanishi A, Yasukawa Y, Moriyama M, Konishi M, Inoshima Y
30. 2013: Pathogen–host–environment interplay and disease emergence. Emerg Microbes Infect 2: 1-7
< A, Hogerwerf L, Slingenbergh J https://doi.org/10.1038/emi.2013.5>
31. 2018: First diagnosed case of camelpox virus in Israel. Viruses 10: 78
< O, Melamed S, Paran N, Weiss S, Khinich Y, Gelman B, Solomony A, Laskar-Levy O https://doi.org/10.3390/v10020078>
32. 2012: A reverse transcription loop-mediated isothermal amplification method for rapid detection of bovine viral diarrhea virus. J Virol Methods 186: 43-48
< Q, Xie Z, Xie L, Liu J, Pang Y, Deng X, Xie Z, Peng Y, Wang X https://doi.org/10.1016/j.jviromet.2012.08.007>
33. FAO 2011: Challenges of Animal Health Informations Systems and Surveillance for Animal Diseases and Zoonoses
34. FAO 2012: Lessons learned from the eradication of rinderpest for controlling other transboundary animal diseases. In: Proceedings of the GREP Symposium and High-Level Meeting, 12-15 October 2010, Rome, Italy. FAO Animal Production and Health Proceedings, No. 15. Rome, Italy
35. FAO, OIE 2015: Global strategy for the control and eradication of PPR
36. FAO, OIE 2020: Global control of African swine fever: A GF-TADs initiative. 2020–2025. Paris. Available at http://www.fao.org/3/ca9164en/CA9164EN.pdf
37. 2015: Loop-mediated isothermal amplification (RT-LAMP): a new approach for the detection of foot-and-mouth disease virus and its sero-types in Pakistan. Iran. J Vet Res 16: 331-334
U, Latif A, Irshad H, Ullah A, Zahur AB, Naeem K, Khan SH, Ahmed Z, Rodriguez LL, Smoliga G
38. 2012: Development and laboratory evaluation of two lateral flow devices for the detection of vesicular stomatitis virus in clinical samples. J Virol Methods 180: 96-100
< NP, Clavijo A, Yang M, Velazquez-Salinas L, Nordengrahn A, Hutchings GH, Kristersson T, Merza M https://doi.org/10.1016/j.jviromet.2011.12.010>
39. 2010: Development and laboratory validation of a lateral flow device for the detection of serotype SAT 2 foot-and-mouth disease viruses in clinical samples. J Virol Methods 163: 474-476
< NP, Nordengrahn A, Hutchings GH, Paton DJ, Kristersson T, Brocchi E, Grazioli S, Merza M https://doi.org/10.1016/j.jviromet.2009.09.022>
40. 2016: Development of a reverse transcription loop-mediated isothermal amplification assay for the detection of vesicular stomatitis New Jersey virus: Use of rapid molecular assays to differentiate between vesicular disease viruses. J Virol Methods 234: 123-131
< VL, Howson EL, Madi M, Mioulet V, Caiusi C, Pauszek SJ, Rodriguez LL, King DP https://doi.org/10.1016/j.jviromet.2016.04.012>
41. 2013: What limits the evolutionary emergence of pathogens? Philos Trans R Soc Lond B Biol Sci 368: 20120086
< S, Hochberg ME, Holt RD, Day T https://doi.org/10.1098/rstb.2012.0086>
42. 2020: Detection of respiratory viral antigens in nasal swabs of bovine by sandwich ELISA. Indian J Anim Res 54: 354-358
R, Kaur G, Dwivedi PN
43. 2020: Rapid and visual detection of porcine deltacoronavirus by recombinase polymerase amplification combined with a lateral flow dipstick. BMC Vet Res 16: 1-8
< X, Liu X, Zhang Y, Wei Y, Wang Y https://doi.org/10.1186/s12917-020-02341-3>
44. 2019: Molecular aspects of Rift Valley fever virus and the emergence of reassortants. Virus Genes 55: 1-11
< NN, Indran SV, Balaraman V, Wilson WC, Richt JA https://doi.org/10.1007/s11262-018-1611-y>
45. 2011: Common laboratory artifacts caused by inappropriate sample collection and transport: how to get the most out of a sample. Top Companion Anim Med 26: 109-118
< S, Gilor C https://doi.org/10.1053/j.tcam.2011.02.003>
46. 2007: Use of deep nasopharyngeal swabs as a predictive diagnostic method for natural respiratory infections in calves. Vet Rec 160: 22
< KS, Sarasola P, Renoult E, Tilt N, Keane S, Windsor GD, Rowan TG, Sunderland SJ https://doi.org/10.1136/vr.160.1.22>
47. 2011: Rapid and quantitative determination of biological warfare agent Brucella abortus CSP-31 using surface plasmon resonance. Anal Bioanal Electrochem 3: 26-37
G, Kumar A, Boopathi M, Thavaselvam D, Singh B, Vijayaraghavan R
48. 2017: Easy and non-invasive disease detection in pigs by adenosine deaminase activity determinations in saliva. PLoS One 12: e0179299
< AM, De La Cruz-Sánchez E, Montes A, Sotillo J, Gutiérrez-Panizo C, Fuentes P, Tornel PL, Cabezas-Herrera J https://doi.org/10.1371/journal.pone.0179299>
49. 2020: Development of a visible reverse transcription-loop-mediated isothermal amplification assay for the detection of Rift Valley fever virus. Front Microbiol 11: 590732
< Q, Zhang S, Liu D, Yan F, Wang H, Huang P, Bi J, Jin H, Feng N, Cao Z, Gao Y https://doi.org/10.3389/fmicb.2020.590732>
50. 2017: Rapid detection of infectious bovine rhinotracheitis virus using recombinase polymerase amplification assays. BMC Vet Res 13: 386
< P, Wang H, Zhao G, He C, He H https://doi.org/10.1186/s12917-017-1284-0>
51. 2018a: Rapid detection of bovine viral diarrhea virus using recombinase polymerase amplification combined with lateral flow dipstick assays in bulk milk. Vet Arh 88: 627-642
< P, Zhao G, Wang H, He C, He H https://doi.org/10.24099/vet.arhiv.0145>
52. 2018b: Development of a recombinase polymerase amplification combined with lateral-flow dipstick assay for detection of bovine ephemeral fever virus. Mol Cell Probes 38: 31-37
< P, Zhao G, Wang H, He C, Huan Y, He H https://doi.org/10.1016/j.mcp.2017.12.003>
53. 2017: Technological advances in veterinary diagnostics: opportunities to deploy rapid decentralised tests to detect pathogens affecting livestock. Rev Sci Tech Off Int Epiz 36: 479-498
< E, Soldan A, Webster K, Beer M, Zientara S, Belak S, Sanchez-Vizcaino JM, Van Borm S, King DP, Fowler VL https://doi.org/10.20506/rst.36.2.2668>
54. 2014: Development of a surface plasmon resonance biosensing approach for the rapid detection of porcine circovirus type2 in sample solutions. PloS One 9: e111292
< J, Wang T, Wang S, Chen M, Wang M, Mu L, Chen H, Hu X, Liang H, Zhu J, Jiang M https://doi.org/10.1371/journal.pone.0111292>
55. IDEXX BVDV: Ag Point-of-Care Test. Available at https://www.idexx.com/en/livestock/livestock-tests/ruminant-tests/idexx-bvdv-ag-point-care-test/
56. 2011: Real-time loop-mediated isothermal amplification assay for rapid and sensitive detection of anthrax spores in spiked soil and talcum powder. World J Microbiol Biotechnol 27: 1407-1413
< N, Kumar JS, Parida MM, Merwyn S, Rai GP, Agarwal GS https://doi.org/10.1007/s11274-010-0592-3>
57. 2010: Detection of African swine fever virus by loop-mediated isothermal amplification. J Virol Methods 164: 68-74
< HE, Ebert K, McGonigle R, Reid SM, Boonham N, Tomlinson JA, Hutchings GH, Denyer M, Oura CA, Dukes JP, King DP https://doi.org/10.1016/j.jviromet.2009.11.034>
58. 2020: Noninvasive sampling for detection of elephant endotheliotropic herpesvirus and genomic DNA in Asian (Elephas maximus) and African (Loxodonta africana) elephants. J Zoo Wildl Med 51: 433-437
< A, Evans TS, Molter C, Howard LL, Ling P, Goldstein T, Gilardi K https://doi.org/10.1638/2019-0112>
59. 2015: Linear-after-the-exponential (LATE)-PCR: improved asymmetric PCR for quantitative DNA-analysis. Forensic Sci Int Genet Suppl Ser 5: e659-e661
< KS, Schürenkamp M, Sibbing U, Lischka C, Pfeiffer H, Vennemann M https://doi.org/10.1016/j.fsigss.2015.09.246>
60. 2007: Evaluation of a rapid immunodiagnostic test kit for rabies virus. J Virol Methods 145: 30-36
< B, Oh J, Lee C, Park BK, Park Y, Hong K, Lee K, Cho B, Song D https://doi.org/10.1016/j.jviromet.2007.05.005>
61. 2015: Rapid and specific identification of Brucella abortus using the loop-mediated isothermal amplification (LAMP) assay. Comp Immunol Microbiol Infect Dis 40: 1-6
< SI, Her M, Kim JY, Lee JJ, Lee K, Sung SR, Jung SC https://doi.org/10.1016/j.cimid.2015.03.001>
62. 2014: Loop-mediated isothermal amplification (LAMP) test for specific and rapid detection of Brucella abortus in cattle. Vet Q 34: 174-179
< K, Rathore R, Thomas P, Arun TR, Viswas KN, Agarwal RK, Manjunathachar HV, Dhama K https://doi.org/10.1080/01652176.2014.966172>
63. Kelly MJ, Betsch J, Wultsch C, Mesa B, Mills LS 2012: Noninvasive sampling for carnivores. In: Carnivore Ecology and Conservation: a Handbook of Techniques, pp. 47-69
64. 2018: Outbreak of anthrax associated with handling and eating meat from a cow, Uganda, 2018. Emerg Infect Dis 26: 2799-2806
< E, Ario AR, Bainomugisha K, Cossaboom CM, Lowe D, Bulage L, Kadobera D, Sekamatte M, Lubwama B, Tumusiime D, Tusiime P https://doi.org/10.3201/eid2612.191373>
65. 2016: Lateral flow assays. Essays Biochem 60: 111-120
KM, Gallotta A
66. 2019: Detection of Bacillus anthracis in animal tissues using InBios active anthrax detect rapid test lateral flow immunoassay. Lett Appl Microbiol 68: 480-484
< CB, Marston CK, Stoddard RA, Cossaboom C, Salzer JS, Kozel TR, Gates‐Hollingsworth MA, Cleveland CA, Thompson AT, Dalton MF, Yabsley MJ https://doi.org/10.1111/lam.13134>
67. 2019: First occurrence of Rift Valley fever outbreak in Niger, 2016. Vet Med Sci 5: 70-78
< A, Fall G, Ibrahim A, Ousmane S, Sadio B, Abdoulaye M, Alhassane A, Mahaman AE, Issaka B, Sidikou F, Zaneidou M https://doi.org/10.1002/vms3.135>
68. 2019: Development of a reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay for the detection of porcine pegivirus. J Virol Methods 270: 59-65
< H, Li K, Bi Z, Gu J, Song D, Lei D, Luo S, Huang D, Wu Q, Ding Z, Wang L https://doi.org/10.1016/j.jviromet.2019.04.019>
69. 2020: Correction: Review: a comprehensive summary of a decade development of the recombinase polymerase amplification. Analyst 145: 1950-1960
< J, Macdonald J, von Stetten F https://doi.org/10.1039/C9AN90127B>
70. 2009: Rapid detection of porcine reproductive and respiratory syndrome virus by reverse transcription loop-mediated isothermal amplification assay. J Virol Methods 155: 55-60
< Q, Zhou QF, Xue CY, Ma JY, Zhu DZ, Cao YC https://doi.org/10.1016/j.jviromet.2008.09.012>
71. 2012: Reverse transcription loop-mediated isothermal amplification for rapid detection of Japanese encephalitis virus in swine and mosquitoes. Vector Borne Zoonotic Dis 12: 1042-1052
< H, Liu ZJ, Jing J, Ren JQ, Liu YY, Guo HH, Fan M, Lu HJ, Jin NY https://doi.org/10.1089/vbz.2012.0991>
72. 2018: Recombinase polymerase amplification: basics, applications and recent advances. Trends Anal Chem 98: 19-35
< IM, O’Sullivan CK https://doi.org/10.1016/j.trac.2017.10.015>
73. 2019: Fully automated and integrated multiplex detection of high consequence livestock viral genomes on a microfluidic platform. Transbound Emerg Dis 66: 144-155
< O, Fisher M, Erickson A, Nfon C, Ambagala A https://doi.org/10.1111/tbed.12994>
74. 2016: Reverse transcription loop-mediated isothermal amplification assays for rapid identification of eastern and western strains of bluetongue virus in India. J Virol Methods 234: 65-74
< S, Maan NS, Batra K, Kumar A, Gupta A, Rao PP, Hemadri D, Reddy YN, Guimera M, Belaganahalli MN, Mertens PP https://doi.org/10.1016/j.jviromet.2016.04.002>
75. 2010: Re-emergence of bluetongue, African horse sickness, and other orbivirus diseases. Vet Res 41: 35
< NJ, Guthrie AJ https://doi.org/10.1051/vetres/2010007>
76. 2019: Rapid detection of peste des petits ruminants virus (PPRV) nucleic acid using a novel low-cost reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for future use in nascent PPR eradication programme. Viruses 11: 699
< M, Howson E, Fowler V, Batten C, Flannery J, Selvaraj M, Parida S https://doi.org/10.3390/v11080699>
77. 2020: Bioaerosol sampling: Classical approaches, advances, and perspectives. Aerosol Sci Technol 54: 496-519
< G https://doi.org/10.1080/02786826.2019.1671950>
78. Männistö HE 2018: Collection of oral fluid samples from wild boar in the field conditions to detect African swine fever virus (ASFV) (Master’s Degree thesis, Eesti Maaülikool).
79. 1995: Detection of foot-and-mouth disease virus in nasal swabs of asymptomatic cattle by RT-PCR within 24 hours. J Virol Methods 53: 255-261
< O, Straub OC, Ahl R, Haas B https://doi.org/10.1016/0166-0934(95)00015-M>
80. 2017: Animal pathogens and their impact on animal health, the economy, food security, food safety and public health. Rev Sci Tech (International Office of Epizootics) 36: 423-433
< TF, Thumbi SM https://doi.org/10.20506/rst.36.2.2663>
81. 2019: Non-invasive faecal sampling reveals spatial organization and improves measures of genetic diversity for the conservation assessment of territorial species: Caucasian lynx as a case species. PloS One 14: e0216549
< D, Fickel J, Hofer H, Förster DW https://doi.org/10.1371/journal.pone.0216549>
82. 2019: Rapid and sensitive recombinase polymerase amplification combined with lateral flow strip for detecting African swine fever virus. Front Microbiol 10: 1004
< F, Zhang J, Li N, Chen T, Wang L, Zhang F, Mi L, Zhang J, Wang S, Wang Y, Zhou X https://doi.org/10.3389/fmicb.2019.01004>
83. 2019: A diagnostic device for in-situ detection of swine viral diseases: The SWINOSTICS project. Sensors 19: 407
< C, Barattini P, Giusti A, Balka G, Bruno U, Bossis I, Gelasakis A, Bonasso M, Philmis P, Dénes L, Peransi S https://doi.org/10.3390/s19020407>
84. 2017: Recombinase polymerase amplification: a promising point-ofcare detection method for enteric viruses. Future Virol 12: 421-429
< MD, Jaykus LA https://doi.org/10.2217/fvl-2017-0034>
85. 2012: Sensitive and specific diagnostic assay for detection of tuberculosis in cattle. Glob Vet 8: 555-564
AA, Abdel-Hamed AS, Fathalla SI, Ghazy AA, Elballal S, Elbagory A, Mahboub H, Gaafar K, Elgayar KE, Mohamed AS, Amin AI
86. 2014a: Novel rope-based sampling of classical swine fever shedding in a group of wild boar showing low contagiosity upon experimental infection with a classical swine fever field strain of genotype 2.3. Vet Microbiol 170: 425-429
< S, Globig A, Böhle W, Petrov A, Strebelow HG, Mettenleiter TC, Depner K https://doi.org/10.1016/j.vetmic.2014.03.004>
87. 2014b: Proof of principle: Non-invasive sampling for early detection of foot-and-mouth disease virus infection in wild boar using a rope-in-a-bait sampling technique. Vet Microbiol 172: 329-333
< S, Haas B, Böhle W, Globig A, Lange E, Mettenleiter TC, Depner K https://doi.org/10.1016/j.vetmic.2014.05.021>
88. 2014: Detection of classical swine fever virus by a surface plasmon resonance assay. Virol Mycol 3: 136
NH, Allaudin ZN, Honari P, Toung OP, Lila MM
89. 2018: Validation of a diagnostic tool for the diagnosis of lumpy skin disease. Vet Dermatol 29: 532-e178
< JJ, Macharia M, Ngeleja CM, Sallu RS, Yongolo MG, Mayenga C, Holton TA https://doi.org/10.1111/vde.12690>
90. 2002: Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes 16: 223-229
< K, Hase T, Notomi T https://doi.org/10.1006/mcpr.2002.0415>
91. 2017: Recent advances in wearable sensors for animal health management. Sens Biosensing Res 12: 15-29
< S https://doi.org/10.1016/j.sbsr.2016.11.004>
92. 2017: Recent advancement in biosensors technology for animal and livestock health management. Biosens Bioelectron 98: 398-407
< S, Tuteja SK, Huang ST, Kelton D https://doi.org/10.1016/j.bios.2017.07.015>
93. 2019: The first detection of equine coronavirus in adult horses and foals in Ireland. Viruses 11: 946
< M, Schofield W, Cullinane A https://doi.org/10.3390/v11100946>
94. 2000: Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28: e63
< T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T https://doi.org/10.1093/nar/28.12.e63>
95. 2009: Simple and rapid lateral-flow assay for the detection of foot-and-mouth disease virus. Clin Vaccine Immunol 16: 1660-1664
< JK, Ferris NP, Lee KN, Joo YS, Hyun BH, Park JH https://doi.org/10.1128/CVI.00213-09>
96. OIE 2019a: Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. Available at https://www.oie.int/standard-setting/terrestrial-manual/access-online/
97. OIE 2019b: Foot‐and‐mouth disease (Infection with Foot and Mouth Disease Virus) [Chapter 3.1. 8]. Manual of diagnostic tests and vaccines for terrestrial animals
98. OIE 2019c: Peste des petits ruminants (Infection with Peste des petits ruminants Virus) [Chapter 3.7.9]. Manual of diagnostic tests and vaccines for terrestrial animals
99. 2020: SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. Euro Surveill 25: 2001005
< N, Molenaar RJ, Vreman S, Harders F, Munnink BB, Hakze-van Der Honing RW, Gerhards N, Tolsma P, Bouwstra R, Sikkema RS, Tacken MG https://doi.org/10.2807/1560-7917.ES.2020.25.23.2001005>
100. 2005: Detection of Mycoplasma hyopneumoniae in lung and nasal swab samples from pigs by nested PCR and culture methods. J Vet Sci 67: 801-805
< Y, Asai T, Okada M, Uto T, Yazawa S, Hirai H, Shibata I, Sato S https://doi.org/10.1292/jvms.67.801>
101. 2004: Real-time reverse transcription loop-mediated isothermal amplification for rapid detection of West Nile virus. J Clin Microbiol 42: 257-263
< M, Posadas G, Inoue S, Hasebe F, Morita K https://doi.org/10.1128/JCM.42.1.257-263.2004>
102. 2019: Quantifying levels of peste des petits ruminants (PPR) virus in excretions from experimentally infected goats and its importance for nascent PPR eradication programme. Viruses 11: 249
< S, Selvaraj M, Gubbins S, Pope R, Banyard A, Mahapatra M https://doi.org/10.3390/v11030249>
103. 2016: Reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay for the visual detection of European and North American porcine reproductive and respiratory syndrome viruses. J Virol Methods 237: 10-13
< JY, Park S, Park YR, Kang DY, Kim EM, Jeon HS, Kim JJ, Kim WI, Lee KT, Kim SH, Lee KK https://doi.org/10.1016/j.jviromet.2016.08.008>
104. 2018: Loop-mediated isothermal amplification assay for the rapid and visual detection of novel porcine circovirus 3. J Virol Methods 253: 26-30
< YR, Kim HR, Kim SH, Lee KK, Lyoo YS, Yeo SG, Park CK https://doi.org/10.1016/j.jviromet.2017.12.006>
105. 2006: DNA detection using recombination proteins. PLoS Biol 4: e204
< O, Williams CH, Stemple DL, Armes NA https://doi.org/10.1371/journal.pbio.0040204>
106. 2010: Design and optimization of a novel reverse transcription linear‐after‐the‐exponential PCR for the detection of foot‐and‐mouth disease virus. J Appl Microbiol 109: 180-189
< KE, Mistry R, Reid SM, Bharya S, Dukes JP, Hartshorn C, King DP, Wangh LJ https://doi.org/10.1111/j.1365-2672.2009.04640.x>
107. 2005: Linear-After-The-Exponential (LATE)-PCR: primer design criteria for high yields of specific single-stranded DNA and improved real-time detection. Proc Natl Acad Sci 102: 8609-8614
< KE, Sanchez JA, Rice JE, Wangh LJ https://doi.org/10.1073/pnas.0501946102>
108. 1962: Studies with rinderpest virus in tissue culture: the use of attenuated culture virus as a vaccine for cattle. Res Vet Sci 3: 172-182
< W, Ferris RD https://doi.org/10.1016/S0034-5288(18)34916-6>
109. 2017: Bioaerosol sampling for airborne respiratory viruses in an experimental medicine pig handling facility, Singapore. Southeast Asian J Trop Med Public Health 48: 828-835
MK, Ma M, Nguyen TT, Su YC, Pena EM, Ogden BE, Gray GC
110. 2020: Development of rapid, sensitive and in-expensive point of care diagnostic method for brucellosis in dairy cattle at resource-limited areas. Indian J Public Health Res Dev 11: 566-572
R, Mallepaddi PC, Punati RD, Maity SN, Alapati KS, Polavarapu KK, Polavarapu R
111. 2015: Development of a new LAMP assay for the detection of CSFV strains from Cuba: a proof-of-concept study. Arch Virol 160: 1435-1448
< A, Pérez LJ, Perera CL, Schmeiser S, Meyer D, Meindl-Boehmer A, Rios L, Austermann-Busch S, Frias-Lepoureau MT, Becher P https://doi.org/10.1007/s00705-015-2407-1>
112. Prickett JR 2009: Detection of viral pathogens of swine using oral fluid specimens. Graduate Theses and Dissertations, Iowa State University, 11013. Available at https://lib.dr.iastate.edu/etd/11013
113. 2010: The development of oral fluid-based diagnostics and applications in veterinary medicine. Anim Health Res Rev 11: 207-216
< JR, Zimmerman JJ https://doi.org/10.1017/S1466252310000010>
114. 2005: Climate change and the recent emergence of bluetongue in Europe. Nat Rev Microbiol 3: 171-181
< BV, Mellor PS, Rogers DJ, Samuel AR, Mertens PP, Baylis M https://doi.org/10.1038/nrmicro1090>
115. Pusterla N, Vin R, Leutenegger C, Mittel, LD, Divers TJ 2016: Equine coronavirus infection. In: Emerging and re-emerging infectious diseases of livestock, pp. 121-132
116. 2019: A novel approach for detection of Brucella using a real-time recombinase polymerase amplification assay. Mol Cell Probes 48: 101451
< L, Nan W, Wang Y, Zhang Y, Tan P, Chen Y, Mao K, Chen Y https://doi.org/10.1016/j.mcp.2019.101451>
117. 2020: Detection of leptospirosis bacteria in rodent urine by surface plasmon resonance sensor using graphene. Photonic Sensors 11: 305-313
< S, Prajapati YK, Srivastava, DK, Maurya JB, Saini JP https://doi.org/10.1007/s13320-020-0587-2>
118. 2015: Porcine reproductive and respiratory syndrome virus (PRRSV) from the first outbreak of India shows close relationship with the highly pathogenic variant of China. Vet Q 35: 186-193
< TK, Jagan Mohanarao G, Gogoi A, Hauhnar L, Isaac L https://doi.org/10.1080/01652176.2015.1066043>
119. 2019: A rapid RT-LAMP assay for the detection of all four lineages of Peste des Petits Ruminants Virus. J Virol Methods 274: 113730
< P, Flannery J, Arnold H, Howson EL, Darpel K, Stedman A, Corla A, Batten C https://doi.org/10.1016/j.jviromet.2019.113730>
120. 2018: A monoclonal antibody to DIII E protein allowing the differentiation of West Nile virus from other flaviviruses by a lateral flow assay. J Virol Methods 260: 41-44
< B, Pérez T, Camuńas A, Pérez-Ramírez E, Llorente F, Sánchez-Seco MP, Jiménez-Clavero MÁ, Venteo Á https://doi.org/10.1016/j.jviromet.2018.06.016>
121. 2013: Rinderpest: the veterinary perspective on eradication. Philos Trans R Soc Lond B Biol Sci 368: 20120139
< P, Mariner J, Kock R https://doi.org/10.1098/rstb.2012.0139>
122. 2019: Emerging human infectious diseases and the links to global food production. Nat Sustain 2: 445-456
< JR, Barrett CB, Civitello DJ, Craft ME, Delius B, DeLeo GA, Hudson PJ, Jouanard N, Nguyen KH, Ostfeld RS, Remais JV https://doi.org/10.1038/s41893-019-0293-3>
123. 2017: Re‐emergence of bluetongue virus serotype 8 in France, 2015. Transbound Emerg Dis 64: 998-1000
< C, Breard E, Viarouge C, Vitour D, Romey A, Garnier A, Fablet A, Lowenski S, Gorna K, Caignard G, Pagneux C https://doi.org/10.1111/tbed.12453>
124. 2010: A method for simultaneous detection and identification of Brazilian dog-and vampire bat-related rabies virus by reverse transcription loop-mediated isothermal amplification assay. J Virol Methods 168: 13-17
< Y, Kobayashi Y, Hirano S, Mochizuki N, Itou T, Ito FH, Sakai T https://doi.org/10.1016/j.jviromet.2010.04.008>
125. 2015: Designs, formats and applications of lateral flow assay: A literature review. J Saudi Chem Soc 19: 689-705
< M, Kawde AN, Daud M https://doi.org/10.1016/j.jscs.2014.09.001>
126. 2017: An immuno-chromatographic lateral flow assay (LFA) for rapid on-the-farm detection of classical swine fever virus (CSFV). Arch Virol 162: 3045-3050
< R, Angamuthu R, Kanagaraj V, Kathaperumal K, Chothe SK, Nissly RH, Barry RM, Jayarao BM, Kuchipudi SV https://doi.org/10.1007/s00705-017-3464-4>
127. 2004: Linear-After-The-Exponential (LATE)–PCR: An advanced method of asymmetric PCR and its uses in quantitative real-time analysis. Proc Natl Acad Sci 101: 1933-1938
< JA, Pierce KE, Rice JE, Wangh LJ https://doi.org/10.1073/pnas.0305476101>
128. 2016: Development of a novel lateral flow assay for detection of African swine fever in blood. BMC Vet Res 12: 206
< P, Gallardo C, Monedero A, Ruiz T, Arias M, Sanz A, Rueda P https://doi.org/10.1186/s12917-016-0831-4>
129. 2004: Development of a dipstick assay for detection of Leishmania-specific canine antibodies. J Clin Microbiol 42: 193-197
< HD, Cardoso L, Hommers M, Kroon N, Belling G, Rodrigues M, Semiăo-Santos SJ, Vetter H https://doi.org/10.1128/JCM.42.1.193-197.2004>
130. 2020: Molecular characterization of the re-emerging West Nile virus in avian species and equids in Israel, 2018, and pathological description of the disease. Parasit Vectors 13: 528
< G, Farnoushi Y, Berkowitz A, Edery N, Hahn S, Steinman A, Lublin A, Erster O https://doi.org/10.1186/s13071-020-04399-2>
131. 2008: Salivary diagnostics: enhancing disease detection and making medicine better. Eur J Dent Educ 12: 22-29
A, Wong DT
132. 2020: Detection of SARS-CoV-2 in a cat owned by a COVID-19 affected patient in Spain. Proc Natl Acad Sci 117: 24790-24793
< J, Puig M, Rodon J, Avila-Nieto C, Carrillo J, Cantero G, Terrón MT, Cruz S, Parera M, Noguera-Julián M, Izquierdo-Useros N https://doi.org/10.1073/pnas.2010817117>
133. 2017: Detection of genome, antigen, and antibodies in oral fluids from pigs infected with foot-and-mouth disease virus. Can J Vet Res 81: 82-90
C, Yang M, Bittner H, Ambagala A, Lung O, Zimmerman J, Giménez-Lirola LG, Nfon C
134. 2016: Recombinase polymerase amplification assay for rapid detection of lumpy skin disease virus. BMC Vet Res 12: 244
< MA, El-Deeb A, El-Tholoth M, Hoffmann D, Czerny CP, Hufert FT, Weidmann M, Abd El Wahed A https://doi.org/10.1186/s12917-016-0875-5>
135. 2015: Point-of-care diagnostics in low resource settings: present status and future role of microfluidics. Biosensors 5: 577-601
< S, Zapatero-Rodríguez J, Estrela P, O’Kennedy R https://doi.org/10.3390/bios5030577>
136. 2018: Review on structure, function and applications of microfluidic systems. Int J Biosen Bioelectron 4: 263-265
H, Khanahmadi M
137. 2020: Loop-mediated isothermal amplification (LAMP) for the diagnosis of Zika virus: a review. Viruses 12: 19
< SJ, Pardee K, Pena L https://doi.org/10.3390/v12010019>
138. 1956: The latex fixation test: I. Application to the serologic diagnosis of rheumatoid arthritis. Am J Med 21: 888-892
< JM, Plotz CM https://doi.org/10.1016/0002-9343(56)90103-6>
139. 2020: Infection of dogs with SARS-CoV-2. Nature 14: 1-6
TH, Brackman CJ, Ip SM, Tam KW, Law PY, To EM, Yu VY, Sims LD, Tsang DN, Chu DK, Perera RA,
140. 2008: Towards on-site pathogen detection using antibody-based sensors. Biosens Bioelectron 24: 339-348
< PD, Nicolaisen M, Justesen AF https://doi.org/10.1016/j.bios.2008.06.045>
141. 2013: Detection of Mycobacterium avium subspecies paratuberculosis in the saliva of dairy cows: a pilot study. Vet Microbiol 164: 383-386
< US, Kurnick S, Sreevatsan S https://doi.org/10.1016/j.vetmic.2013.02.021>
142. 2020: Permafrost dynamics and the risk of anthrax transmission: a modelling study. Sci Rep 10: 16460
< E, Mari L, Gabrieli J, Barbante C, Bertuzzo E https://doi.org/10.1038/s41598-020-72440-6>
143. 2017: Development of a novel immunochromatographic lateral flow assay specific for Mycobacterium bovis cells and its application in combination with immunomagnetic separation to test badger faeces. BMC Vet Res 13: 131
< LD, Tort N, Meakin P, Argudo JM, Nzuma R, Reid N, Delahay RJ, Ashford R, Montgomery WI, Grant IR https://doi.org/10.1186/s12917-017-1048-x>
144. 2020: Lumpy skin disease (LSD) outbreaks in cattle in Odisha state, India in August 2019: Epidemiological features and molecular studies. Transbound Emerg Dis 67: 2408-2422
< SB, Mishra N, Kalaiyarasu S, Jhade SK, Hemadri D, Sood R, Bal GC, Nayak MK, Pradhan SK, Singh VP https://doi.org/10.1111/tbed.13579>
145. 2010: Development of a novel LAMP diagnostic method for visible detection of swine Pasteurella multocida. Vet Res Commun 34: 649-657
< D, Wang J, Wu R, Wang C, He X, Zheng J, Yang H https://doi.org/10.1007/s11259-010-9433-y>
146. 2016: Emergence of lumpy skin disease in Greece. Transbound Emerg Dis 63: 260-265
< KE, Antoniou SE, Iliadou P, Sachpatzidis A, Plevraki E, Agianniotaki EI, Fouki C, Mangana‐Vougiouka O, Chondrokouki E, Dile C https://doi.org/10.1111/tbed.12497>
147. 2012: A review of African horse sickness and its implications for Ireland. Ir Vet J 65: 1-8
< GM, Jess S, Murchie AK https://doi.org/10.1186/2046-0481-65-9>
148. 2018: A recombinase polymerase amplification lateral flow dipstick for field diagnosis of bovine leukemia virus infection and its effectiveness compared to iiPCR and ELISA. J Antivir Antiretrovir 10: 35-42
< PA, Shiu JS, Lai FY, Chen YH, Shiau JW https://doi.org/10.4172/1948-5964.1000178>
149. 2020: Development of a visible loop mediated isothermal amplification assay for rapid detection of Bacillus anthracis. Biologicals 69: 59-65
< L, Chaturvedi VK, Gupta PK, Sunita SC, Sumithra TG, Prusty BR, Yadav AK https://doi.org/10.1016/j.biologicals.2020.11.004>
150. 2017: Point-of-care diagnostics: recent advances and trends. Biosensors (Basel) 7: 62
< SK https://doi.org/10.3390/bios7040062>
151. 2016: Simple and rapid visual detection methods of orf virus by B2L gene-based loop-mediated isothermal amplification assay. Adv Anim Vet Sci 4: 152-159
< G, Bhanuprakash V, Balamurugan V, Kumar A, Bora DP, Reveniah Y, Arya S, Madhavan A, Muthuchelvan D, Pandey AB https://doi.org/10.14737/journal.aavs/2016/4.3.153.160>
152. 2012: Development of loop-mediated isothermal amplification assay for specific and rapid detection of camelpox virus in clinical samples. J Virol Methods 183: 34-39
< G, Bhanuprakash V, Balamurugan V, Singh RK, Pandey AB https://doi.org/10.1016/j.jviromet.2012.03.019>
153. 2020: Loop mediated isothermal amplification system (LAMP): A comprehensive review with special reference to veterinary medicine. J Vet Sci Med Diagn 9: 1-11
G, Kushwaha A, Kumar A, Poulinlu G, Karki M, Sasikumar P
154. 2018a: Development of a real time reverse transcription loop-mediated isothermal amplification method (RT-LAMP) for detection of a novel swine acute diarrhea syndrome coronavirus (SADS-CoV). J Virol Methods 260: 45-48
< H, Cong F, Zeng F, Lian Y, Liu X, Luo M, Guo P, Ma J https://doi.org/10.1016/j.jviromet.2018.06.010>
155. 2018b: Rapid detection of foot-and-mouth disease virus using reverse transcription recombinase polymerase amplification combined with a lateral flow dipstick. J Virol Methods 261: 46-50
< HM, Zhao GM, Hou PL, Yu L, He CQ, He HB https://doi.org/10.1016/j.jviromet.2018.07.011>
156. 2017: Reverse transcription recombinase polymerase amplification assay for the rapid detection of type 2 porcine reproductive and respiratory syndrome virus. J Virol Methods 243: 55-60
< JC, Yuan WZ, Han QA, Wang JF, Liu LB https://doi.org/10.1016/j.jviromet.2017.01.017>
157. 2015: Rapid detection of contagious ecthyma by loop-mediated isothermal amplification and epidemiology in Jilin Province China. J Vet Sci 15: 0340
K, Shao H, Pei Z, Hu G
158. Wang X, Bailey ES, Qi X, Yu H, Bao C, Gray GC 2020: Bioaerosol sampling at a live animal market in Kunshan (China): A noninvasive approach for detecting emergent viruses. Open Forum Infect 7: ofaa134
159. 2019: Development of a reverse transcription recombinase polymerase amplification combined with lateral‐flow dipstick assay for avian influenza H9N2 HA gene detection. Transbound. Emerg Dis 66: 546-551
< Z, Yang PP, Zhang YH, Tian KY, Bian CZ, Zhao J https://doi.org/10.1111/tbed.13063>
160. 2017a: Development of real-time and lateral flow dipstick recombinase polymerase amplification assays for rapid detection of goatpox virus and sheeppox virus. Virol J 14: 1-8
Y, Qin X, Zhang X, Zhao Z, Zhang W, Zhu X, Cong G, Li Y, Zhang Z
161. 2017b: Development of isothermal recombinase polymerase amplification assay for rapid detection of porcine circovirus type 2. Biomed Res Int 8403642: 1-8
Y, Qin X, Sun Y, Cong G, Li Y, Zhang Z
162. 2017c: Development of real-time and lateral flow strip reverse transcription recombinase polymerase Amplification assays for rapid detection of peste des petits ruminants virus. Virol J 14: 1-10
Y, Qin X, Song Y, Zhang W, Hu G, Dou Y, Li Y, Zhang Z
163. 2018: Rapid veterinary diagnosis of bovine reproductive infectious diseases from semen using paper-origami DNA microfluidics. ACS sensors 3: 403-409
< Z, Xu G, Reboud J, Ali SA, Kaur G, McGiven J, Boby N, Gupta PK, Chaudhuri P, Cooper JM https://doi.org/10.1021/acssensors.7b00825>
164. 2020: Reusable surface plasmon resonance biosensor chip for the detection of H1N1 influenza virus. Biosens Bioelectron 168: 112561
< H, Shin J, Sim J, Cho H, Hong S https://doi.org/10.1016/j.bios.2020.112561>
165. 2015: Development of a real-time reverse transcription loop-mediated isothermal amplification method for the rapid detection of porcine epidemic diarrhea virus. Virol J 12: 1-8
X, Shi L, Lv X, Yao W, Cao M, Yu H, Wang X, Zheng S
166. 2019: Poor implementation of non-invasive sampling in wildlife genetics studies. Rethinking Ecology 4: 119
< MA https://doi.org/10.3897/rethinkingecology.4.32751>
167. 2017: A simple and rapid identification method for newly emerged porcine Deltacoronavirus with loop-mediated isothermal amplification. Biol Res 50: 1-7
F, Ye Y, Song D, Guo N, Peng Q, Li A, Zhou X, Chen Y, Zhang M, Huang D, Tang Y
168. 2015: Molecular detection of Theileria spp. in livestock on five Caribbean islands. BioMed Res Int 2015: 624728
J, Kelly P, Li J, Xu C, Wang C
169. 2011: Development of a loop-mediated isothermal amplification assay for the detection of Mycobacterium bovis. Vet J 187: 393-396
< J, Zhang GH, Yang L, Huang R, Zhang Y, Jia K, Yuan W, Li SJ https://doi.org/10.1016/j.tvjl.2010.01.001>
170. Zhang JX, Hoshino K 2018: Molecular sensors and nanodevices: principles, designs and applications in biomedical engineering. Academic Press, Cambridge, 600 p.
171. 2019: High-frequency mutation and recombination are responsible for the emergence of novel porcine reproductive and respiratory syndrome virus in northwest China. Arch Virol 164: 2725-2733
< X, Li Y, Xiao S, Yang X, Chen X, Wu P, Song J, Ma Z, Cai Z, Jiang M, Zhang Y https://doi.org/10.1007/s00705-019-04373-z>
172. 2019: Use of a recombinase polymerase amplification commercial kit for rapid visual detection of Pasteurella multocida. BMC Vet Res 15: 154
< G, He H, Wang H https://doi.org/10.1186/s12917-019-1889-6>
173. 2018: Development of a recombinase polymerase amplification combined with a lateral flow dipstick assay for rapid detection of the Mycoplasma bovis. BMC Vet Res 14: 412
< G, Hou P, Huan Y, He C, Wang H, He H https://doi.org/10.1186/s12917-018-1703-x>
174. 2018: Rapid specific and visible detection of porcine circovirus type 3 using loop‐mediated isothermal amplification (LAMP). Transbound Emerg Dis 65: 597-601
< S, Wu X, Shi J, Peng Z, Gao M, Xin C, Liu Y, Wang S, Xu S, Han H, Yu J https://doi.org/10.1111/tbed.12835>
175. 2016: Isolation of H5N6, H7N9 and H9N2 avian influenza A viruses from air sampled at live poultry markets in China, 2014 and 2015. Euro Surveill 21: 30331
< J, Wu J, Zeng X, Huang G, Zou L, Song Y, Gopinath D, Zhang X, Kang M, Lin J, Cowling BJ https://doi.org/10.2807/1560-7917.ES.2016.21.35.30331>