Acta Vet. Brno 2022, 91: 141-148
https://doi.org/10.2754/avb202291020141
MOL-PCR and xMAP technology – a novel approach to the detection of African swine fever virus DNA
References
1. 2016: Preventive measures aimed at minimizing the risk of African swine fever virus spread in pig farming systems. Acta Vet Scand 58: 82
< S, Rutili D, Guberti V https://doi.org/10.1186/s13028-016-0264-x>
2. 2017: Update on the risk of introduction of African swine fever by wild boar into disease-free European union countries. Transbound Emerg Dis 64: 1424-1432
< J, Rodríguez A, Iglesias I, Muńoz MJ, Jurado C, Sánchez-Vizcaíno JM, de la Torre A https://doi.org/10.1111/tbed.12527>
3. 2018: Survival of viral pathogens in animal feed ingredients under transboundary shipping models. Plos One 13: e0194509
< SA, Bauermann FV, Niederwerder MC, Singrey A, Clement T, de Lima M, Long C, Patterson G, Sheahan MA, Stoian AMM, Petrovan V, Jones CK, De Jong J, Ji J, Spronk GD, Minion L, Christopher-Hennings J, Zimmerman JJ, Rowland RRR, Nelson E, Sundberg P, Diel DG https://doi.org/10.1371/journal.pone.0194509>
4. 2015: Scientific opinion on African swine fever. EFSA Journal 13: 4163
AHAW Panel (EFSA Panel on Animal Health and Welfare)
5. 2020: African swine fever virus: an emerging DNA arbovirus. Front Vet Sci 7: 215
< NN, Madden DW, Wilson WC, Trujillo JD, Richt JA https://doi.org/10.3389/fvets.2020.00215>
6. 2021: MOL-PCR and xMAP Technology A multiplex system for fast detection of food- and waterborne viruses. J Mol Diagn 23: 765-776
< J, Vasickova P, Nesvadbova M, Novotny J, Mati T, Kralik P https://doi.org/10.1016/j.jmoldx.2021.03.005>
7. 2021: Development and inter-laboratory validation of diagnostics panel for detection of biothread bacteria based on MOL-PCR. Microorganisms 9: 38
< P, Hrdy J, Markova J, Dresler J, Pajer P, Pavlis O, Branich P, Borilova G, Reichelova M, Babak V, Reslova N, Kralik P https://doi.org/10.3390/microorganisms9010038>
8. OIE 2019: Self-declaration of the recovery of freedom from African swine fever in all suids by the Czech Republic. Available at https://www.oie.int/fileadmin/Home/eng/Animal_Health_in_the_World/docs/pdf/Self-declarations/2019_05_CzechRep_ASF_ANG.pdf
9. OIE 2022: African swine fever (ASF) – situation report 3. Available at https://www.oie.int/app/uploads/2022/01/asf-situation-report-3.pdf
10. 1967: Stability of African swine fever virus with particular reference to heat and pH inactivation. Archiv für die gesamte Virusforschung 21: 383-402
< W, Parker J https://doi.org/10.1007/BF01241738>
11. 2019: A novel perspective on MOL-PCR optimization and MAGPIX analysis of in-house multiplex foodborne pathogens detection assay. Sci Rep 9: 2719
< N, Huvarova V, Hrdy J, Kasny M, Kralik P https://doi.org/10.1038/s41598-019-40035-5>
12. 2013: A multiplex bead-based suspension array assay for interrogation of phylogenetically informative single nucleotide polymorphisms for Bacillus anthracis. J Microbiol Methods 95: 357-365
< S, Hamidjaja RA, Girault G, Lofstrom C, Ruuls R, Sylviane D https://doi.org/10.1016/j.mimet.2013.10.004>
13. 2012: Optimisation of a triplex real time RT-PCR for detection of hepatitis E virus RNA and validation on biological samples. J Virol Methods 180: 38-42
< P, Kralik P, Slana I, Pavlik I https://doi.org/10.1016/j.jviromet.2011.12.007>
14. 2015: Evaluation of DNA extraction methods for PCR-based detection of Listeria monocytogenes from vegetables. Lett Appl Microbiol 60: 265-272
< H, Kubikova I, Kralik P https://doi.org/10.1111/lam.12367>