Acta Vet. Brno 2022, 91: 163-170
https://doi.org/10.2754/avb202291020163
Smart nanofibres for specific and ultrasensitive nanobiosensors and drug delivery systems
References
1. 2013: Liposome: classification, preparation, and applications. Nanoscale Res Lett 8: 102
< A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M,Kazem Nejati-Koshki https://doi.org/10.1186/1556-276X-8-102>
2. 2013: Antibody–based biosensors for detection of veterinary viral pathogens. Adv Anim Vet Sci 1: 37-44
BV, Arora S
3. Banerjee A, Maity S, Mastrangelo CH 2021: Nanotechnology for biosensors: A Review. arXiv: 2101.02430
4. 2020: Nanotreatment and nanodiagnosis of prostate cancer: Recent updates. Nanomaterials 10: 1696
< M, Sabir F, Rahdar A, Arshad R, Kyzas GZ https://doi.org/10.3390/nano10091696>
5. 2011: Current trends in nanobiosensor technology. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3: 229-46
< L, Wu D, Langer R https://doi.org/10.1002/wnan.136>
6. 2021: Nanomaterials in skin regeneration and rejuvenation. Int J Mol Sci 22: 7095
< E, Medici S, Coradduzza D, Cruciani S, Amler E, Maioli M https://doi.org/10.3390/ijms22137095>
7. 2019: PVA and PCL nanofibers are suitable for tissue covering and regeneration. Physiol Res 68: 501-508
< J, Uhlík J, Kestlerová A, Královič M, Divín R, Fedačko J, Beneš J, Beneš M, Vocetková K, Sovková V, Nečas A, Nečasová A, Holešovský J, Amler E https://doi.org/10.33549/physiolres.934389>
8. 2016: Introduction to biosensors. Essays Biochem 60: 1-8
N, Jolly P, Formisano N, Estrela P
9. 2010: Electrospinning: A fascinating fiber fabrication technique. Biotechnol Adv 28: 325-347
< N, Kundu SC https://doi.org/10.1016/j.biotechadv.2010.01.004>
10. 2017: Self-assembling nanoparticles encapsulating zoledronic Acid inhibit mesenchymal stromal cells differentiation, migration and secretion of proangiogenic factors and their interactions with prostate cancer cells. Oncotarget 8: 42926-42938
< C, Casagrande N, Pivetta E, Colombatti A, Boccellino M, Amler E, Normanno N, Caraglia M, De Rosa G, Aldinucci D https://doi.org/10.18632/oncotarget.17216>
11. 2015: Bees as Biosensors: Chemosensory Ability, Honey Bee Monitoring Systems, and Emergent Sensor Technologies Derived from the Pollinator Syndrome. Biosensors 5: 678-711
< J J, Henderson C B, Seccomb R A, Welch P M, Debnam S E, Firth D R https://doi.org/10.3390/bios5040678>
12. 2021: Rapid methods for antimicrobial resistance diagnosis in contaminated soils for effective remediation strategy. TrAC 137: 116-203
Z, Yuwei P, Shifu G, Frederic C, Zhugen Y
13. 2018: Electrochemical immunosensor based on magnetite nanoparticles incorporated electrospun polyacrylonitrile nanofibers for Vitamin-D3 detection. Mater Sci Eng C Mater Biol Appl 93:145-156
< D, Gupta PK, Solanki PR https://doi.org/10.1016/j.msec.2018.07.036>
14. 2019: Disposable sensors in diagnostics, food, and environmental monitoring. Adv Mater 31: 18-39
C, Bruch R, Costa-Rama E, Fernández-Abedul MT, Merkoçi A, Manz A, Urban, GA, Güder F
15. 2018: Application of biosensors to detection of epidemic diseases in animals. Res Vet Sci 118: 444-448
< X, Zhou J https://doi.org/10.1016/j.rvsc.2018.04.011>
16. 2018: A polypropylene mesh modified with poly-ε-caprolactone nanofibers in hernia repair: large animal experiment. Int J Nanomedicine 29: 31-43
B, Plencner M, Kralovic M, Rampichova M, Sovkova V, Vocetkova K, Otahal M, Tonar Z, Kolinko Y, Amler E, Hoch J
17. Ensafi AA 2019: Chapter 1 - An introduction to sensors and biosensors. In: Ensafi AA (Ed.): Electrochemical Biosensors. Elsevier, Amsterdam, 373 p.
18. 2016: Application of polymeric nanofibers in medical designs, part II: Neural and cardiovascular tissues. Int J Polym 65: 957-970
B
19. 2017: Application of polymeric nanofibers in medical designs, part I: Skin and eye. Int J Polym 66: 521-531
B
20. 2017: Disposable aptamer-sensor aided by magnetic nanoparticle enrichment for detection of salivary cortisol variations in obstructive sleep apnea patients. Sci Rep 7: 17992
< RE, Umasankar Y, Manickam P, Nickel JC, Iwasaki LR, Kawamoto BK, Todoki KC, Scott JM, Bhansali S. https://doi.org/10.1038/s41598-017-17835-8>
21. 2011: Validation of an automated method for salivary alpha-amylase measurements in pigs (Sus scrofa domestica) and its application as a stress biomarker. J Vet Diagn Invest 23: 282-287
< M, Tecles F, Gutiérrez A, Otal J, Martínez-Subiela S, Cerón JJ https://doi.org/10.1177/104063871102300213>
22. 2020: Nanomaterial-based fluorescent biosensors for monitoring environmental pollutants: A critical review. Talanta Open 2: 100006
< MI, Caono J, Peńuela G https://doi.org/10.1016/j.talo.2020.100006>
23. 2011: Degradable polyester scaffolds with controlled surface chemistry combining minimal protein adsorption with specific bioactivation. Nat Mater 10: 67-73
< D, Heffels KH, Beer MV, Gasteier P, Möller M, Boehm G, Dalton PD, Groll J https://doi.org/10.1038/nmat2904>
24. 2018: Implantable biosensors and their contribution to the future of precision medicine. Vet J 239: 21-29
< M, Meehan J, Ward C, Langdon S P, Kunkler I H, Murray A, Argyle D https://doi.org/10.1016/j.tvjl.2018.07.011>
25. 2013: Development of implantable medical devices: from an engineering perspective. Int J Neurol 17: 98-106
< YH https://doi.org/10.5213/inj.2013.17.3.98>
26. 2021: Biosensors for wastewater-based epidemiology for monitoring public health. Water Res 191: 116787
M, Hua Z, Yuwei P, Zhugen Y
27. 2020: Can a paper-based device trace COVID-19 sources with wastewater-based epidemiology? Environ Sci Technol 54: 3733-3735
M, Hua Z, Zhugen Y
28. 2011: Novel fabricated matrix via electrospinning for tissue engineering. J Biomed Mater 72: 117-124
MS, Bhattarai SR, Kim HY, Kim SZ, Lee KH
29. 2015: Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens Bioelectron 74: 1061-1068
< J, Imani S, de Araujo, W R, Warchall J, Valdés-Ramírez G, Paixão TRLC, Mercier PP, Wang J https://doi.org/10.1016/j.bios.2015.07.039>
30. 2011: A bioluminescent probe for salivary cortisol. Bioconjugate Chem 22: 1835-1841
< SB, Takenaka Y, Torimura M https://doi.org/10.1021/bc200220k>
31. 2007: In vitro, in vivo and post explantation testing of glucose-detecting biosensors: Current methods and recommendations. Biomaterials 28: 3687-3703
< H E, Reichert W M https://doi.org/10.1016/j.biomaterials.2007.03.034>
32. 2019: Electrospun nanofibers as support for the healing of intestinal anastomoses. Physiol Res 68: 517-525
< M, Vjaclovsky M, Kestlerova A, Rustichelli F, Hoch J, Amler E https://doi.org/10.33549/physiolres.934387>
33. 2016: Recent advances of basic materials to obtain electrospun polymeric nanofibers for medical applications. IOP Conference Series: Materials Science and Engineering 145: 3
LR, Hristian L, Leon AL, Popa A
34. 2019: Wastewater-based epidemiology as a novel assessment approach for population-level metal exposure. Sci Total Environ 689: 1125-1132
< C, Mirzoyan N https://doi.org/10.1016/j.scitotenv.2019.06.419>
35. 2012: Core/shell nanofibers with embedded liposomes as a drug delivery system. Biomacromolecules 13: 952-962
< A, Buzgo M, Benada O, Rampichova M, Fisar Z, Filova E, Tesarova M, Lukas D, Amler E https://doi.org/10.1021/bm2018118>
36. 2021: Advances on ultra-sensitive electrospun nanostructured electrochemical and colorimetric sensors for diabetes mellitus detection. J Nanomater 23: 1-23
H, Lim P, Maria K, Huey L, Noor F, Abu B, Radacsi N
37. 2021: Amalgamation of biosensors and nanotechnology in disease diagnosis: Mini review. Sens Int 2: 100089
< R, Sharma A, Kumar D, Mukherjee S, Sen F, Kumar A P https://doi.org/10.1016/j.sintl.2021.100089>
38. 2021: Review on biosensors and recent development of nanostructured materials-enabled biosensors. J Sens (Basel) 21: 1109
< V, Lee NA https://doi.org/10.3390/s21041109>
39. 2017: Recent advancement in biosensors technology for animal and livestock health management. Biosens Bioelectron 98: 398-407
< S, Tuteja SK, Huang ST, Kelton D https://doi.org/10.1016/j.bios.2017.07.015>
40. 2021: Next step in 2nd generation glucose biosensors: Ferrocene-loaded electrospun nanofibers. Mater Sci Eng C 128: 112-270
G, Roxana-Mihaela A, Pinar C
41. 2015: Applications of animal biosensors: a review. IEEE Sens J 15: 637-645
< Y, Lee Y, Heath J, Kim M, https://doi.org/10.1109/JSEN.2015.2428814>
42. 2020: Detection of Campylobacter bacteria in air samples for continuous real-time monitoring of Campylobacter colonization in broiler flocks. Appl Environ Microbiol 75: 2074-2078
< KN, Lund M, Skov J, Christensen LS, Hoorfar J https://doi.org/10.1128/AEM.02182-08>
43. 2014: Abdominal closure reinforcement by using polypropylene mesh functionalized with poly-ε-caprolactone nanofibers and growth factors for prevention of incisional hernia formation. Int J Nanomed 9: 3263-3277
< M, East B, Tonar Z, Otahal M, Prosecka E, Rampichova, M, Krejci T, Litvinec A, Buzgo M, Mickova A, Nečas A, Hoch J, Amler E https://doi.org/10.2147/IJN.S63095>
44. 2017: Functionalization of 3D fibrous scaffolds prepared using centrifugal spinning with liposomes as a simple drug delivery system. Acta Polytechnol CTU Proc 8: 24-26
< M, Buzgo M, Lukasova V, Mickova A, Vocetkova K, Sovkova V, Rustichelli F, Amler E https://doi.org/10.14311/APP.2017.8.0024>
45. 2018 Peptide-based electrochemical biosensor for juvenile idiopathic arthritis detection. Biosens Bioelectron 100: 577-582
< VR, Araujo GR, Vaz ER, Ueira-Vieira C, Goulart LR, Madurro JM, Brito-Madurro AG https://doi.org/10.1016/j.bios.2017.10.012>
46. 2017: Detection and characterization of Staphylococcus aureus and methicillin-resistant S. aureus in foods confiscated in EU borders. Front Microbiol 8: 13-44
< D, Oniciuc EA, García PG, Gallego D, Fernández-Natal I, Dominguez-Gil M, Eiros-Bouza JM, Wagner M, Nicolau A I, Hernández M https://doi.org/10.3389/fmicb.2017.01344>
47. 2020: The effect of montmorillonite functionalization on the performance of glucose biosensors based on composite montmorillonite/PAN nanofibers. Electrochim Acta 353: 136484
A, Pinar C
48. 1997: Liposomes in drug delivery: Progress and limitations. Int J Pharm 154: 123-140
< A, Sharma US https://doi.org/10.1016/S0378-5173(97)00135-X>
49. 2014: Therapeutic applications of electrospun nanofibers for drug delivery systems. Arch Pharm Res 37: 69-78
< YJ, Kim WJ, Yoo HS https://doi.org/10.1007/s12272-013-0284-2>
50. 2008: Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 29: 1989-2006
< TJ, Horst AVR https://doi.org/10.1016/j.biomaterials.2008.01.011>
51. 2017: Polycaprolactone nanofiber mesh with adhered liposomes as a simple delivery system for bioactive growth factors. Transl Med Rep 1: 58-63
A, Vocetkova K, Sovkova V, Rampichova M, Filova E, Amler E
52. 2017: Simultaneous measurement of salivary cortisol and alpha-amylase: Application and recommendations. Neurosci Biobehav Rev 83: 657-677
< J, Skoluda N, Kappert MB, Nater UM https://doi.org/10.1016/j.neubiorev.2017.08.015>
53. 2021: Label-free detection of β-amyloid (1-42) in plasma using electrospun SnO2 nanofiber-based electro-analytical sensor. Sens Actuators B Chem 346: 130522
< P, Tripathy S, Vanjari SRK, Singh R, Singh V, Singh SG https://doi.org/10.1016/j.snb.2021.130522>
54. 2017: Electrospun chitosan-gelatin biopolymer composite nanofibers for horseradish peroxidase immobilization in a hydrogen peroxide biosensor. Biosensors (Basel) 7: 47
< S, Dawan P, Barnthip N https://doi.org/10.3390/bios7040047>
55. 2013: Biosensors: sense and sensibility. Chem Soc Rev 42: 84-96
< AP https://doi.org/10.1039/c3cs35528d>
56. Varvařovská L, Jarošíková T, Amler E 2021: Preparation and testing of specific bionanosensor for detection of Staphylococcus aureus. Conference: Instruments and Methods for Biology and Medicine, Czech Republic
57. 2016: Nanofibrous polycaprolactone scaffolds with adhered platelets stimulate proliferation of skin cells. Cell Prolif 5: 568-578
< K, Buzgo M, Sovkova V, Bezdekova D, Kneppo P, Amler E https://doi.org/10.1111/cpr.12276>
58. 2014: Liposomes — their characterization, preparation and embedding into nanofibers. Lekar a Technika 44: 11-17
K, Mickova A, Jarosikova T, Rosina J, Handl M, Amler E
59. 2020: A simple drug delivery system for platelet-derived bioactive molecules, to improve melanocyte stimulation in vitiligo treatment. Nanomater 10: 9
< K, Vera S, Matej B, Lukasova V, Divin R, Rampichova M, Blazek P, Zikmund T, Kaiser J, Karpisek Z, Amler E, Filova E https://doi.org/10.3390/nano10091801>
60. 2019: Nanofiber-integrated miniaturized systems: an intelligent platform for cancer diagnosis. Anal Bioanal Chem 411: 4251-4264
< N https://doi.org/10.1007/s00216-019-01589-5>
61. Yoon JY 2016: Introduction to biosensors: From electric circuits to immunosensors. Second edn, Springer, New York, 262 p.
62. 2017: Immunosensors for C-reactive protein based on ultrathin films of carboxylated cellulose nanofibrils. Biomacromolecules 18: 526-534
< Y, Rojas OJ https://doi.org/10.1021/acs.biomac.6b01681>