Acta Vet. Brno 2022, 91: 293-301
https://doi.org/10.2754/avb202291030293
A rabbit femoral trochlear defect model for chondral and osteochondral regeneration
References
1. 2009: Preclinical animal models in single site cartilage defect testing: a systematic review. Osteoarthr Cartil 17: 705-713
< BJ, Parvizi J, Boston R, Schaer TP https://doi.org/10.1016/j.joca.2008.11.008>
2. 2004: Ex vivo characterization of articular cartilage and bone lesions in a rabbit ACL transection model of osteoarthritis using MRI and micro-CT. Osteoarthr Cartil 12: 986-996
< DL, Kirkley A, Laverty S, Thain LM, Spouge AR, Holdsworth DW https://doi.org/10.1016/j.joca.2004.08.010>
3. 2003: Weight bearing as a measure of disease progression and efficacy of anti-inflammatory compounds in a model of monosodium iodoacetate-induced osteoarthritis. Osteoarthr Cartil 11: 821-830
< SE, Calcaterra SL, Brooker RM, Huber CM, Guzman RE, Juneau PL, Schrier DJ, Kilgore KS https://doi.org/10.1016/S1063-4584(03)00163-8>
4. 2013: Bone marrow stimulation of the medial femoral condyle produces inferior cartilage and bone repair compared to the trochlea in a rabbit surgical model. J Orthop Res 31: 1757-1764
< H, Chevrier A, Hoemann CD, Sun J, Picard G, Buschmann MD https://doi.org/10.1002/jor.22422>
5. 2010: Animal models for cartilage regeneration and repair. Tissue Eng Part B Rev 16: 105-115
< CR, Szczodry M, Bruno S https://doi.org/10.1089/ten.teb.2009.0452>
6. 2009: Cellular and histopathological changes in the infrapatellar fat pad in the monoiodoacetate model of osteoarthritis pain. Osteoarthr Cartil 17: 805-812
< KM, Ball AD, Jones HB, Brinckmann S, Read SJ, Murray F https://doi.org/10.1016/j.joca.2008.11.002>
7. 1999: Skeletal effects of aging in male rhesus monkeys. Bone 24: 17-23
< RJ, Lane MA, Binkley N, Wegner FH, Kemnitz JW https://doi.org/10.1016/S8756-3282(98)00147-1>
8. 2014: Animal models of cartilage repair. Bone Jt Res 3: 89-94
< JL, Hung CT, Kuroki K, Stoker AM, Cook CR, Pfeiffer FM, Sherman SL, Stannard JP https://doi.org/10.1302/2046-3758.34.2000238>
9. 2014: Articular chondrocytes and mesenchymal stem cells seeded on biodegradable scaffolds for the repair of cartilage in a rat osteochondral defect model. Biomaterials 35: 7460-7469
< RL, Kinard LA, Lam J, Needham CJ, Lu S, Kasper FK, Mikos AG https://doi.org/10.1016/j.biomaterials.2014.05.055>
10. 2019: Bioactive scaffolds for osteochondral regeneration. J Orthop Translat 17: 15-25
< C, Chang J, Wu C https://doi.org/10.1016/j.jot.2018.11.006>
11. 2009: Use of genetically modified muscle and fat grafts to repair defects in bone and cartilage. Eur Cells Mater 18: 96-111
< CH, Liu FJ, Glatt V, Hoyland JA, Kirker-Head C, Walsh A, Betz O, Wells JW, Betz V, Porter RM, Saad FA, Gerstenfeld LC, Einhorn TA, Harris MB, Vrahas MS https://doi.org/10.22203/eCM.v018a09>
12. 2005: Regeneration of articular cartilage – Evaluation of osteochondral defect repair in the rabbit using multiphasic implants. Osteoarthr Cartil 13: 798-807
< SR, Bradica G, Brekke JH, Goldman SM, Ieska K, Issack P, Bong MR, Tian H, Gokhale J, Coutts RD, Kronengold RT https://doi.org/10.1016/j.joca.2005.04.018>
13. 2007: The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. Osteoarthr Cartil 15: 1061-1069
< SS, Blanchet TJ, Morris EA https://doi.org/10.1016/j.joca.2007.03.006>
14. 2009: Rat cartilage repair using nanophase PLGA/HA composite and mesenchymal stem cells. J Bioact Compat Polym 24: 83-99
< L, Qiang Z, Yuxiang X, Jie F, Zhongli S, Zhijun P https://doi.org/10.1177/0883911508100655>
15. 2012: Unlike bone, cartilage regeneration remains elusive. Science (New York, NY) 338: 917-921
< DJ, Hu JC, Athanasiou KA https://doi.org/10.1126/science.1222454>
16. 2007: Structural pathology in a rodent model of osteoarthritis is associated with neuropathic pain: increased expression of ATF-3 and pharmacological characterisation. Pain 128: 272-282
< SP, Ball AD, Heapy CG, Westwood RF, Murray F, Read SJ https://doi.org/10.1016/j.pain.2006.12.022>
17. 2004: Repair of articular cartilage defects in rabbits using CDMP1 gene-transfected autologous mesenchymal cells derived from bone marrow. Rheumatology 43: 980-985
< R, Wakitani S, Tsumaki N, Morita Y, Matsushita I, Gejo R, Kimura T https://doi.org/10.1093/rheumatology/keh240>
18. 2017: Canine articular cartilage regeneration using mesenchymal stem cells seeded on platelet rich fibrin: Macroscopic and histological assessments. Bone Jt Res 6: 98-107
< D, Shams Asenjan K, Dehdilani N, Parsa H https://doi.org/10.1302/2046-3758.62.BJR-2016-0188.R1>
19. 2014: Current perspectives in mesenchymal stem cell therapies for osteoarthritis. Stem Cells Int 2014: 194318
< B, Honsawek S https://doi.org/10.1155/2014/194318>
20. 2015: Osteochondral regeneration with a novel aragonite-hyaluronate biphasic scaffold: up to 12-month follow-up study in a goat model. J Orthop Surg Res 10: 81-81
< E, Filardo G, Shani J, Altschuler N, Levy A, Zaslav K, Eisman JE, Robinson D https://doi.org/10.1186/s13018-015-0211-y>
21. 2015: Biodegradable CSMA/PECA/graphene porous hybrid scaffold for cartilage tissue engineering. Sci Rep 5: 9879-9879
< J, Qu Y, Chu B, Zhang X, Qian Z https://doi.org/10.1038/srep09879>
22. 2007: Osteoarthritis severity is sex dependent in a surgical mouse model. Osteoarthr Cartil 15: 695-700
< HL, Blanchet TJ, Peluso D, Hopkins B, Morris EA, Glasson SS https://doi.org/10.1016/j.joca.2006.11.005>
23. 2013: Of mice, men and elephants: The relation between articular cartilage thickness and body mass. PloS One 8: e57683
< J, de Grauw J, Benders K, Kik M, Lest C, Creemers L, Dhert W, van Weeren P https://doi.org/10.1371/journal.pone.0057683>
24. McCarrel TM, Pownder SL, Gilbert S, Koff MF, Castiglione E, Saska RA, Bradica G, Fortier LA 2017: Two-year evaluation of osteochondral repair with a novel biphasic graft saturated in bone marrow in an equine model cartilage 8: 406-416
25. 2015: Animal models of osteoarthritis: Comparisons and key considerations. Vet Pathol 52: 803-818
< AM https://doi.org/10.1177/0300985815588611>
26. 2020: Animal models of osteochondral defect for testing biomaterials. Biochem Res Int 2020: 9659412
< X, Ziadlou R, Grad S, Alini M, Wen C, Lai Y, Qin L, Zhao Y, Wang X https://doi.org/10.1155/2020/9659412>
27. 2016: The benefits and limitations of animal models for translational research in cartilage repair. J Exp Orthop 3: 1
< CJ, Ramesh A, Brama PA, O’Byrne JM, O’Brien FJ, Levingstone TJ https://doi.org/10.1186/s40634-015-0037-x>
28. 2003: Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum 48: 3464-3474
< JM, Fink DJ, Hunziker EB, Barry FP https://doi.org/10.1002/art.11365>
29. 2017: Cartilage regeneration in osteoarthritic patients by a composite of allogeneic umbilical cord blood-derived mesenchymal stem cells and hyaluronate hydrogel: results from a clinical trial for safety and proof-of-concept with 7 years of extended follow-up. Stem Cells Transl Med 6: 613-621
< YB, Ha CW, Lee CH, Yoon YC, Park YG https://doi.org/10.5966/sctm.2016-0157>
30. 2016: The monoiodoacetate model of osteoarthritis pain in the mouse. J Vis Exp 111: 53746
T, Sousa-Valente J, Malcangio M
31. 2020: Models of osteoarthritis: Relevance and new insights. Calcif Tissue Int 109: 243-256
< HJ, Hughes D, Stevens C, Staines KA https://doi.org/10.1007/s00223-020-00670-x>
32. 2008: Influence of scaffold stiffness on subchondral bone and subsequent cartilage regeneration in an ovine model of osteochondral defect healing. Am J Sports Med 36: 2379-2391
< K, Schell H, Kleemann RU, Schill A, Weiler A, Duda GN, Epari DR https://doi.org/10.1177/0363546508322899>
33. 1994: Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am 76: 579-592
< S, Goto T, Pineda SJ, Young RG, Mansour JM, Caplan AI, Goldberg VM https://doi.org/10.2106/00004623-199404000-00013>
34. 2011: Recent progress in understanding molecular mechanisms of cartilage degeneration during osteoarthritis. Ann N Y Acad Sci 1240: 61-69
< M, Shen J, Jin H, Im HJ, Sandy J, Chen D https://doi.org/10.1111/j.1749-6632.2011.06258.x>
35. 2017: Repair of rabbit cartilage defect based on the fusion of rabbit bone marrow stromal cells and Nano-HA/PLLA composite material. Artif Cells Nanomed Biotechnol 45: 115-119
< W, Guo D, Peng L, Chen YF, Cui J, Xiong J, Lu W, Duan L, Chen K, Zeng Y, Wang D https://doi.org/10.3109/21691401.2016.1138482>