Acta Vet. Brno 2022, 91: 293-301

https://doi.org/10.2754/avb202291030293

A rabbit femoral trochlear defect model for chondral and osteochondral regeneration

Tung Nguyen-Thanh1,2, Bao-Song Nguyen-Tran3, Sara Cruciani4, Thuan Dang-Cong3, Margherita Maioli4

1Hue University, University of Medicine and Pharmacy, Faculty of Basic Science, Hue, Vietnam
2Hue University, University of Medicine and Pharmacy, Institute of Biomedicine, Hue, Vietnam
3Hue University, University of Medicine and Pharmacy, Department of Histology, Embryology, Pathology and Forensic, Hue, Vietnam
4University of Sassari, Department of Biomedical Sciences, Sassari, Italy

Received December 7, 2021
Accepted June 14, 2022

References

1. Ahern BJ, Parvizi J, Boston R, Schaer TP 2009: Preclinical animal models in single site cartilage defect testing: a systematic review. Osteoarthr Cartil 17: 705-713 <https://doi.org/10.1016/j.joca.2008.11.008>
2. Batiste DL, Kirkley A, Laverty S, Thain LM, Spouge AR, Holdsworth DW 2004: Ex vivo characterization of articular cartilage and bone lesions in a rabbit ACL transection model of osteoarthritis using MRI and micro-CT. Osteoarthr Cartil 12: 986-996 <https://doi.org/10.1016/j.joca.2004.08.010>
3. Bove SE, Calcaterra SL, Brooker RM, Huber CM, Guzman RE, Juneau PL, Schrier DJ, Kilgore KS 2003: Weight bearing as a measure of disease progression and efficacy of anti-inflammatory compounds in a model of monosodium iodoacetate-induced osteoarthritis. Osteoarthr Cartil 11: 821-830 <https://doi.org/10.1016/S1063-4584(03)00163-8>
4. Chen H, Chevrier A, Hoemann CD, Sun J, Picard G, Buschmann MD 2013: Bone marrow stimulation of the medial femoral condyle produces inferior cartilage and bone repair compared to the trochlea in a rabbit surgical model. J Orthop Res 31: 1757-1764 <https://doi.org/10.1002/jor.22422>
5. Chu CR, Szczodry M, Bruno S 2010: Animal models for cartilage regeneration and repair. Tissue Eng Part B Rev 16: 105-115 <https://doi.org/10.1089/ten.teb.2009.0452>
6. Clements KM, Ball AD, Jones HB, Brinckmann S, Read SJ, Murray F 2009: Cellular and histopathological changes in the infrapatellar fat pad in the monoiodoacetate model of osteoarthritis pain. Osteoarthr Cartil 17: 805-812 <https://doi.org/10.1016/j.joca.2008.11.002>
7. Colman RJ, Lane MA, Binkley N, Wegner FH, Kemnitz JW 1999: Skeletal effects of aging in male rhesus monkeys. Bone 24: 17-23 <https://doi.org/10.1016/S8756-3282(98)00147-1>
8. Cook JL, Hung CT, Kuroki K, Stoker AM, Cook CR, Pfeiffer FM, Sherman SL, Stannard JP 2014: Animal models of cartilage repair. Bone Jt Res 3: 89-94 <https://doi.org/10.1302/2046-3758.34.2000238>
9. Dahlin RL, Kinard LA, Lam J, Needham CJ, Lu S, Kasper FK, Mikos AG 2014: Articular chondrocytes and mesenchymal stem cells seeded on biodegradable scaffolds for the repair of cartilage in a rat osteochondral defect model. Biomaterials 35: 7460-7469 <https://doi.org/10.1016/j.biomaterials.2014.05.055>
10. Deng C, Chang J, Wu C 2019: Bioactive scaffolds for osteochondral regeneration. J Orthop Translat 17: 15-25 <https://doi.org/10.1016/j.jot.2018.11.006>
11. Evans CH, Liu FJ, Glatt V, Hoyland JA, Kirker-Head C, Walsh A, Betz O, Wells JW, Betz V, Porter RM, Saad FA, Gerstenfeld LC, Einhorn TA, Harris MB, Vrahas MS 2009: Use of genetically modified muscle and fat grafts to repair defects in bone and cartilage. Eur Cells Mater 18: 96-111 <https://doi.org/10.22203/eCM.v018a09>
12. Frenkel SR, Bradica G, Brekke JH, Goldman SM, Ieska K, Issack P, Bong MR, Tian H, Gokhale J, Coutts RD, Kronengold RT 2005: Regeneration of articular cartilage – Evaluation of osteochondral defect repair in the rabbit using multiphasic implants. Osteoarthr Cartil 13: 798-807 <https://doi.org/10.1016/j.joca.2005.04.018>
13. Glasson SS, Blanchet TJ, Morris EA 2007: The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. Osteoarthr Cartil 15: 1061-1069 <https://doi.org/10.1016/j.joca.2007.03.006>
14. Huade L, Qiang Z, Yuxiang X, Jie F, Zhongli S, Zhijun P 2009: Rat cartilage repair using nanophase PLGA/HA composite and mesenchymal stem cells. J Bioact Compat Polym 24: 83-99 <https://doi.org/10.1177/0883911508100655>
15. Huey DJ, Hu JC, Athanasiou KA 2012: Unlike bone, cartilage regeneration remains elusive. Science (New York, NY) 338: 917-921 <https://doi.org/10.1126/science.1222454>
16. Ivanavicius SP, Ball AD, Heapy CG, Westwood RF, Murray F, Read SJ 2007: Structural pathology in a rodent model of osteoarthritis is associated with neuropathic pain: increased expression of ATF-3 and pharmacological characterisation. Pain 128: 272-282 <https://doi.org/10.1016/j.pain.2006.12.022>
17. Katayama R, Wakitani S, Tsumaki N, Morita Y, Matsushita I, Gejo R, Kimura T 2004: Repair of articular cartilage defects in rabbits using CDMP1 gene-transfected autologous mesenchymal cells derived from bone marrow. Rheumatology 43: 980-985 <https://doi.org/10.1093/rheumatology/keh240>
18. Kazemi D, Shams Asenjan K, Dehdilani N, Parsa H 2017: Canine articular cartilage regeneration using mesenchymal stem cells seeded on platelet rich fibrin: Macroscopic and histological assessments. Bone Jt Res 6: 98-107 <https://doi.org/10.1302/2046-3758.62.BJR-2016-0188.R1>
19. Kristjánsson B, Honsawek S 2014: Current perspectives in mesenchymal stem cell therapies for osteoarthritis. Stem Cells Int 2014: 194318 <https://doi.org/10.1155/2014/194318>
20. Kon E, Filardo G, Shani J, Altschuler N, Levy A, Zaslav K, Eisman JE, Robinson D 2015: Osteochondral regeneration with a novel aragonite-hyaluronate biphasic scaffold: up to 12-month follow-up study in a goat model. J Orthop Surg Res 10: 81-81 <https://doi.org/10.1186/s13018-015-0211-y>
21. Liao J, Qu Y, Chu B, Zhang X, Qian Z 2015: Biodegradable CSMA/PECA/graphene porous hybrid scaffold for cartilage tissue engineering. Sci Rep 5: 9879-9879 <https://doi.org/10.1038/srep09879>
22. Ma HL, Blanchet TJ, Peluso D, Hopkins B, Morris EA, Glasson SS 2007: Osteoarthritis severity is sex dependent in a surgical mouse model. Osteoarthr Cartil 15: 695-700 <https://doi.org/10.1016/j.joca.2006.11.005>
23. Malda J, de Grauw J, Benders K, Kik M, Lest C, Creemers L, Dhert W, van Weeren P 2013: Of mice, men and elephants: The relation between articular cartilage thickness and body mass. PloS One 8: e57683 <https://doi.org/10.1371/journal.pone.0057683>
24. McCarrel TM, Pownder SL, Gilbert S, Koff MF, Castiglione E, Saska RA, Bradica G, Fortier LA 2017: Two-year evaluation of osteochondral repair with a novel biphasic graft saturated in bone marrow in an equine model cartilage 8: 406-416
25. McCoy AM 2015: Animal models of osteoarthritis: Comparisons and key considerations. Vet Pathol 52: 803-818 <https://doi.org/10.1177/0300985815588611>
26. Meng X, Ziadlou R, Grad S, Alini M, Wen C, Lai Y, Qin L, Zhao Y, Wang X 2020: Animal models of osteochondral defect for testing biomaterials. Biochem Res Int 2020: 9659412 <https://doi.org/10.1155/2020/9659412>
27. Moran CJ, Ramesh A, Brama PA, O’Byrne JM, O’Brien FJ, Levingstone TJ 2016: The benefits and limitations of animal models for translational research in cartilage repair. J Exp Orthop 3: 1 <https://doi.org/10.1186/s40634-015-0037-x>
28. Murphy JM, Fink DJ, Hunziker EB, Barry FP 2003: Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum 48: 3464-3474 <https://doi.org/10.1002/art.11365>
29. Park YB, Ha CW, Lee CH, Yoon YC, Park YG 2017: Cartilage regeneration in osteoarthritic patients by a composite of allogeneic umbilical cord blood-derived mesenchymal stem cells and hyaluronate hydrogel: results from a clinical trial for safety and proof-of-concept with 7 years of extended follow-up. Stem Cells Transl Med 6: 613-621 <https://doi.org/10.5966/sctm.2016-0157>
30. Pitcher T, Sousa-Valente J, Malcangio M 2016: The monoiodoacetate model of osteoarthritis pain in the mouse. J Vis Exp 111: 53746
31. Samvelyan HJ, Hughes D, Stevens C, Staines KA 2020: Models of osteoarthritis: Relevance and new insights. Calcif Tissue Int 109: 243-256 <https://doi.org/10.1007/s00223-020-00670-x>
32. Schlichting K, Schell H, Kleemann RU, Schill A, Weiler A, Duda GN, Epari DR 2008: Influence of scaffold stiffness on subchondral bone and subsequent cartilage regeneration in an ovine model of osteochondral defect healing. Am J Sports Med 36: 2379-2391 <https://doi.org/10.1177/0363546508322899>
33. Wakitani S, Goto T, Pineda SJ, Young RG, Mansour JM, Caplan AI, Goldberg VM 1994: Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am 76: 579-592 <https://doi.org/10.2106/00004623-199404000-00013>
34. Wang M, Shen J, Jin H, Im HJ, Sandy J, Chen D 2011: Recent progress in understanding molecular mechanisms of cartilage degeneration during osteoarthritis. Ann N Y Acad Sci 1240: 61-69 <https://doi.org/10.1111/j.1749-6632.2011.06258.x>
35. Zhu W, Guo D, Peng L, Chen YF, Cui J, Xiong J, Lu W, Duan L, Chen K, Zeng Y, Wang D 2017: Repair of rabbit cartilage defect based on the fusion of rabbit bone marrow stromal cells and Nano-HA/PLLA composite material. Artif Cells Nanomed Biotechnol 45: 115-119 <https://doi.org/10.3109/21691401.2016.1138482>
front cover
  • ISSN 0001-7213 (printed)
  • ISSN 1801-7576 (electronic)

Current issue

Indexed in DOAJ

Archive