Acta Vet. Brno 2022, 91: 317-331
https://doi.org/10.2754/avb202291040317
Single nucleotide polymorphisms and metabolic biochemical profile of productive markers characterize three European breeds of dairy cattle
References
1. 2012: Effect of breed on the composition of cow milk under traditional management practices in Ado-Ekiti, Nigeria. J Appl SCI Environ Manag 16: 55-59
K
2. 2015: Effects of DGAT1 and GH1 polymorphism on milk yield in Holstein cows reared in Turkey. Slov J Vet Res 52: 185-191
B, Ağaoğlu OK, Akçay A, Ağaoğlu AR
3. 1987: Diagnostic measurements of serum thyrotropin during severe non-thyroidal illness: the role in the diagnosis of hyperthyroidism. Clin Chem 33: 2178-2184
< MF, Macoviak JA, McDougal IR https://doi.org/10.1093/clinchem/33.12.2178>
4. Belewu MA 2006: A Functional approach to Dairy Science and Technology. Adlek Printing Enterprises, Ilorin. 235 p.
5. 2012: New phenotypes for new breeding goals in dairy cattle. Animal 6: 544-550
< D, Brochard M https://doi.org/10.1017/S1751731112000018>
6. 1983: Thyroid hormones, blood plasma metabolites and hematological parameters interrelationship to milk yield in dairy cows. Anim Prod 36: 93-104
JW, Kunzp P, Leueneberger H, Gautschik K, Keller M
7. 2014: Effect of breed and dairy system on milk composition and udder health traits in multi-breed dairy herds. Acta Agraria Kaposváriensis 1: 81-88
T, Cecchinato A, Cipolat-Gotet C, Stocco G
8. 2004: Use of milk samples from an evaluation program for the genotyping of cows. Arch Tierz 47: 15-26
J, Götz KU
9. 1998: Identification of a gene encoding an acyl CoA: diacylglycerol acyltransferase, a key enzyme in triglycerol synthesis. Proc Natl Acad Sci USA 95: 13018-13023
< S, Smith SJ, Zheng YW, Myers MH, Lear RS, Sande E, Novak S, Collins C, Welch BC, Lusis JA, Erickson KS, Farese VR https://doi.org/10.1073/pnas.95.22.13018>
10. 2018: Milk composition for admixed dairy cattle in Tanzania. Front Genet 24: 9-142
EK, Bett RC, Amimo JO, Mujibi FDN
11. Dumas BT, Biggs HG 1972: Standard Methods of Clinical Chemistry. Academic Press, New York, 175 p.
12. 2006: GHRH/HaeIII gene polymorphism and its associations with milk production traits in Polish Black-and-White cattle. Arch Tierz 49: 434-438
A, Grzesiak W
13. 2018: Assessment of the genetic structure of Central European cattle breeds based on functional gene polymorphism. Glob Ecol Conserv 16: 1-7
KK, Zugaj SW, Litwinczuk Z, Chabuz W, Sveistien R, Bulla J
14. 2015: Association of ADIPOQ, OLR1 and PPARGC1A gene polymorphisms with growth and carcass traits in Nelore cattle. Meta Gene 4: 1-7
< SDP, de Souza PRF, de Camargo FMG, Gil MMF, Cardoso FD, Zetouni L, Braza UC, Boligonc AA, Branco HR, de Albuquerque GL, Mercadante ZEM, Tonhati H https://doi.org/10.1016/j.mgene.2015.02.001>
15. Frank O 1988: Rural Dairy Technology Experience in Ethiopia. ILCA Manual no. 4
16. 2017: Milk and its sugar-lactose: a picture of evaluation methodologies. Beverages 3: 35
< L https://doi.org/10.3390/beverages3030035>
17. 2015: The overall and fat composition of milk of various species. Mljekarstvo 65: 223-231
< V, Mijić P, Baban M, Škrtić Z, Turalija A https://doi.org/10.15567/mljekarstvo.2015.0401>
18. 2010: Genetic diversity in farm animals – a review. Animal Genetics 41: 6-31
< LF, Lenstra AJ, Eding H, Toro AM, Scherf B, Pilling D, Negrini R, Finlay KE, Jianlin H, Groeneveld E, Weigend S, Consortium G https://doi.org/10.1111/j.1365-2052.2010.02038.x>
19. 2019: Analysis of the oxidized low density lipoprotein receptor 1 gene as a potential marker for carcass quality traits in Qinchuan cattle. Asian-Aust J Anim Sci 32: 58-62
< LS, Raza AHS, Jia J https://doi.org/10.5713/ajas.18.0079>
20. 2004: An interactive bovine in silico SNP database (IBISS). Mamm Genome 15: 819-827
< RJ, Barris WC, McWilliam SM, Dalrymple BP https://doi.org/10.1007/s00335-004-2382-4>
21. 1987: Three differentially expressed Na,K-ATPase alpha subunit isoforms: structural and functional implications. Cell Biol 105: 1855-1865
< VL, Emanuel JR, Ruiz-Opazo N, Levenson R, Nadal-Ginard B https://doi.org/10.1083/jcb.105.4.1855>
22. 1979: A simple sequentially rejective multiple test procedure. Scandina J Stat 6: 65-70
S
23. 2002: Effects of abomasal infusions of histidine, glucose, and leucine on milk production and plasma metabolites of dairy cows fed grass silage diets. J Dairy Sci 85: 204-216
< P, Vanhatalo A, Varvikko T https://doi.org/10.3168/jds.S0022-0302(02)74069-1>
24. 2019: Identification of the association between FABP4 gene polymorphisms and milk production traits in Sfakia sheep. Archives Anim Breed 62: 413-422
< MHA, Tzanidakis N, Sotiraki S, Zhou H, Hickford HGJ https://doi.org/10.5194/aab-62-413-2019>
25. 2006: Association of the OLR1 gene with milk composition in Holstein dairy cattle. J Dairy Sci 89: 1753-1760
< H, Leonard DS, Schutzkus V, Luo W, Chang MY https://doi.org/10.3168/jds.S0022-0302(06)72243-3>
26. 2004: Quantitative trait loci mapping in dairy cattle: review and meta-analysis. Genet Select Evol 36: 163-190
< MS, Thomson PC, Tammen I, Raadsma HW https://doi.org/10.1186/1297-9686-36-2-163>
27. 2009: Effect of ABCG2, PPARGC1A, OLR1 and SCD1 gene polymorphism on estimated breeding values for functional and production traits in Polish Holstein-Friesian bulls. J Appl Genet 50: 125-132
< J, Dorynek Z https://doi.org/10.1007/BF03195663>
28. 2018: Polymorphism in the OLR1 gene and functional traits of dairy cattle. Veterinarski Arhiv 88: 171-177
< I, Czerniawska-Piątkowska E https://doi.org/10.24099/vet.arhiv.170228>
29. 2008: Impairment of glucose metabolism in mice induced by dietary oxidized frying oil is different from that induced by conjugated linoleic acid. Nutrition 24: 744-752
< CF, Shaw HM, Chao PM https://doi.org/10.1016/j.nut.2008.03.010>
30. 2010: Association of ATP1A1 gene polymorphism with heat tolerance traits in dairy cattle. Genet Mol Res 9: 891-896
< YX, Zhou X, Li DQ, Cui QW, Wang GL https://doi.org/10.4238/vol9-2gmr769>
31. 2012: Polymorphisms of the ATP1A1 gene associated with mastitis in dairy cattle. Genet Mol Res 11: 651-660
< YX, Xu CH, Gao TY, Sun Y https://doi.org/10.4238/2012.March.16.3>
32. 2012: Use of multivariate factor analysis to define new indicator variables for milk composition and coagulation properties in Brown Swiss cows. J Dairy Sci 95: 7346-7354
< NPP, Cecchinato A, Mele M, Bittante G https://doi.org/10.3168/jds.2012-5546>
33. 2018: Phenotypic analysis of milk coagulation properties and mineral content of Pinzgauer cattle breed. Arch Anim Breed 61: 215-220
< CL, Penasa M, Visentin G, Cassandro M, De Marchi M https://doi.org/10.5194/aab-61-215-2018>
34. 2016: Influence of raw milk quality on processed dairy products: how do raw milk quality test results relate to product quality and yield? J Dairy Sci 99: 10128-10149
< SC, Martin NH, Barbano DM, Wiedmann M https://doi.org/10.3168/jds.2016-11172>
35. 2016: Ghrelin and its correlation with leptin, energy related metabolites and thyroidal hormones in dairy cows in transitional period. Pol J Vet Sci 19: 197-204
< A, Aarabi N, Rowshan-Ghasrodashti A https://doi.org/10.1515/pjvs-2016-0024>
36. 2009: Database of cattle candidate genes and genetic markers for milk production and mastitis. Anim Genet 40: 832-851
< J, Kunej T, Razpet A, Dovc P https://doi.org/10.1111/j.1365-2052.2009.01921.x>
37. 1981: Repeatabilities of serum constituents in Holstein Friesians affected by feeding, age, lactation and pregnancy. J Dairy Sci 64: 822-831
< RG, Waldern DE https://doi.org/10.3168/jds.S0022-0302(81)82653-7>
38. 1977: DNA sequencing with chain terminating inhibitors. PNAS 74: 5463-5467
< F, Nicklen S, Coulson AR https://doi.org/10.1073/pnas.74.12.5463>
39. 2015: Comparison of some serum biochemical parameters between lactating and non-lactating dairy cows in selected dairy farms of Chittagong district of Bangladesh. Asian J Med Biol Res 1: 259-264
< MDS, Ahaduzzaman MD, Abu Sayeed MD, Sarker R, Nanno AM, Mannan A, Hossain MB https://doi.org/10.3329/ajmbr.v1i2.25620>
40. SAS Institute 2002: SAS/STAT User’s Guide Statistics Ver. 9.1; SAS institute Inc., Cary, NC
41. 2009: Effect of polymorphisms in the FASN, OLR1, PPARGC1A, PRL and STAT5A genes on bovine milk-fat composition. Anim Genet 40: 909-916
< A, Bovenhuis H, Leon-Koosterziel KM, van Arendonk JAM, Visker MHPW https://doi.org/10.1111/j.1365-2052.2009.01940.x>
42. 2014: Molecular markers and their applications in cattle genetic research: A review. Biomark Genom Med 6: 49-58
< U, Deb R, Alyethodi RR, Alex R, Kumar S, Chakraborty S, Dhama K, Sharma A https://doi.org/10.1016/j.bgm.2014.03.001>
43. 1998: Moving from QTL experimental results to the utilization of QTL in breeding programmes. Anim Genet 29: 77-84
< JR, Bovenhuis H https://doi.org/10.1046/j.1365-2052.1998.00238.x>
44. 2008: Are cattle, sheep, and goats endangered species? Mol Ecol 17: 275-284
< P, Ajmone-Marsan P, Valentini A, Rezaei HR, Naderi S, Pompanon F, Negrini R, Ajmone-Marsan P https://doi.org/10.1111/j.1365-294X.2007.03475.x>
45. 2009: Changes in some macro minerals and biochemical parameters in female healthy sort hair goats before and after parturition. J Anim Vet Adv 8: 530-533
PS, Dede E, Ceylan E
46. 2003: DGAT1, a new positional and functional candidate gene for intramuscular fat deposition in cattle. Anim Genet 34: 354-361
< G, Kühn C, Winter A, Ewald G, Bellmann O, Wegner J, Zühlke H, Fries R https://doi.org/10.1046/j.1365-2052.2003.01011.x>
47. 2001: Genetic evidence for Near-Eastern origins of European cattle. Nature 410: 1088-1109
< CS, MacHugh DE, Bailey JF, Magee DA, Loftus RT, Cunningham P, Chamberlain AT, Sykes BC, Bradley DG https://doi.org/10.1038/35074088>
48. Walstra P, Jenness R 1984: Dairy Chemistry and Physics. John Wiley & Sons. New York. 467 p.
49. 2002: Association of a lysine-232 alanine polymorphism in a bovine gene encoding acyl-CoA:diacylglycerol acyltransferase (DGAT1) with variation at a quantitative trait locus for milk fat content. PNAS 99: 9300-9305
< A, Krämer W, Werner FAO, Kollers S, Kata S, Durstewitz G, Buitkamp J, Womack EJ, Thaller G, Fries R https://doi.org/10.1073/pnas.142293799>
50. 2001: Effect of Disease on Clinical Lab Test. 4th edn, AACC. Clinical Chemistry 48: 682-683
DS
51. 2015: Variation in the bovine FABP4 gene affects milk yield and milk protein content in dairy cows. Sci Rep 5: 1-7
H, Cheng L, Azimu W, Hodge S, Edwards GR, Hickford, JGH
52. 2002: New insights into the structure and function of fatty acid-binding proteins. Cell Mol Life Sci 59: 1096-1116
< AW, Veerkamp JH https://doi.org/10.1007/s00018-002-8490-y>