Acta Vet. Brno 2023, 92: 47-51
https://doi.org/10.2754/avb202392010047
In silico and pepscan analysis of African swine fever virus p54 protein
References
1. A, Carrascosa AL, Vińuela E 1990: Interaction of African swine fever virus with macrophages. Virus Res 17: 93-104
<https://doi.org/10.1016/0168-1702(90)90071-I>
2. C, Brun A, Ruiz-Gonzalvo F, Escribano JM 1992: Cell culture propagation modifies the African swine fever virus replication phenotype in macrophages and generates viral subpopulations differing in protein p54. Virus Res 23: 173-182
<https://doi.org/10.1016/0168-1702(92)90076-L>
3. C, Miskin J, Hernáez B, Fernandez-Zapatero P, Soto L, Cantó C, Rodriguez- Crespo I, Dixon L, Escribano JM 2001: African swine fever virus protein p54 interacts with the microtubular motor complex through direct binding to light-chain dynein. J Virol 75: 9819-9827
<https://doi.org/10.1128/JVI.75.20.9819-9827.2001>
4. C, Borca M, Dixon L, Revilla Y, Rodriguez F, Escribano JM 2018: ICTV Report C, ICTV virus taxonomy profile: asfarviridae. J Gen Virol 99: 613-614
<https://doi.org/10.1099/jgv.0.001049>
5. M, Jurado C, Gallardo C, Fernandez-Pinero J, Sanchez-Vizcaino JM 2017: Gaps in African swine fever: Analysis and priorities. Transbound Emerg Dis 65 (Suppl 1): 235-247
<https://doi.org/10.1111/tbed.12695>
6. EA, Hughes JV, Perlow DS, Boger J 1985: Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J Virol 55: 836-839
<https://doi.org/10.1128/jvi.55.3.836-839.1985>
7. Galindo I, Alonso C 2017: African swine fever virus: a review. Viruses: 9
8. B, Tarragó T, Giralt E, Escribano JM, Alonso C 2010: Small peptide inhibitors disrupt a high-affinity interaction between cytoplasmic dynein and a viral cargo protein. J Virol 84: 10792-10801
<https://doi.org/10.1128/JVI.01168-10>
9. MC, Peters B, Nielsen M, Marcatili P 2017: BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res (Web Server Issue) 45: W24-W29
<https://doi.org/10.1093/nar/gkx346>
10. N, Ou Y, Pejsak Z, Zhang Y, Zhang J 2017: Roles of African swine fever virus structural proteins in viral infection. J Vet Res 6: 135-143
<https://doi.org/10.1515/jvetres-2017-0017>
11. S, Carbone V, Gupta SK 2022: Mapping immunogenic epitopes of an adhesin-like protein from Methanobrevibacter ruminantium M1 and comparison of empirical data with in silico prediction methods. Sci Rep 12: 10394
<https://doi.org/10.1038/s41598-022-14545-8>
12. AS, Tongaonkar PC 1990: A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett 276: 172-174
<https://doi.org/10.1016/0014-5793(90)80535-Q>
13. KA, Burmakina GS, Titov IA, Malogolovkin AS 2015: African swine fever CD2v in the context of immune response modulation: bioinformatic analysis of genetic variability and heterogeneity. Int J Agric Biol 50: 785-793
14. Nas JSB 2020: Predicting short peptide immunogenic B cell epitopes distinct in RHDV1 and RHDV2 of Oryctolagus cuniculus. Rabbit Genetics 10: Issue 1
15. JM, Guo D, Hodges RS 1986: New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry 25: 5425-5432
<https://doi.org/10.1021/bi00367a013>
16. V, Murgia MV, Wu P, Lowe AD, Jia W, Rowland RR 2020: Epitope mapping of African swine fever virus (ASFV) structural protein, p54. Virus Res 279: 197871
<https://doi.org/10.1016/j.virusres.2020.197871>
17. F, Alcaraz C, Eiras A, Yanez RJ, Rodriguez JM, Alonso C, Escribano JM 1994: Characterization and molecular basis of heterogeneity of the African swine fever virus envelope protein p54. J Virol 68: 7244-7252
<https://doi.org/10.1128/jvi.68.11.7244-7252.1994>
18. F, Ley V, Go´mez-Puertas P, García R, Rodríguez JF, Escribano JM 1996: The structural protein p54 is essential for African swine fever virus viability. Virus Res 40: 161-167
<https://doi.org/10.1016/0168-1702(95)01268-0>
19. EG, Pérez-Núñez D, Revilla Y 2019: Development of vaccines against African swine fever virus. Virus Res 265: 150-155
<https://doi.org/10.1016/j.virusres.2019.03.022>
20. H, Jacobs SC, Smith GL, Dixon LK, Parkhouse RME 1995: African swine fever virus gene j13L encodes a 25–27 kDa virion protein with variable numbers of repeats. J Gen Virol 76: 1117-1127
<https://doi.org/10.1099/0022-1317-76-5-1117>
21. Y, Kang W, Yang W, Zhang J, Li D, Zheng H 2021: Structure of African swine fever virus and associated molecular mechanisms underlying infection and immunosuppression: a review. Front Immunol 12: 715582
<https://doi.org/10.3389/fimmu.2021.715582>

