Acta Vet. Brno 2023, 92: 47-51

https://doi.org/10.2754/avb202392010047

In silico and pepscan analysis of African swine fever virus p54 protein

Dagmar Břínek Kolařová, Zuzana Úlehlová, Lucie Janíček Hrubá, Klára Klíčová, Vladimír Celer

University of Veterinary Sciences Brno, Faculty of Veterinary Medicine, Department of Infectious Diseases and Microbiology, Brno, Czech Republic

Received August 30, 2022
Accepted December 13, 2022

References

1. Alcami A, Carrascosa AL, Vińuela E 1990: Interaction of African swine fever virus with macrophages. Virus Res 17: 93-104 <https://doi.org/10.1016/0168-1702(90)90071-I>
2. Alcaraz C, Brun A, Ruiz-Gonzalvo F, Escribano JM 1992: Cell culture propagation modifies the African swine fever virus replication phenotype in macrophages and generates viral subpopulations differing in protein p54. Virus Res 23: 173-182 <https://doi.org/10.1016/0168-1702(92)90076-L>
3. Alonso C, Miskin J, Hernáez B, Fernandez-Zapatero P, Soto L, Cantó C, Rodriguez- Crespo I, Dixon L, Escribano JM 2001: African swine fever virus protein p54 interacts with the microtubular motor complex through direct binding to light-chain dynein. J Virol 75: 9819-9827 <https://doi.org/10.1128/JVI.75.20.9819-9827.2001>
4. Alonso C, Borca M, Dixon L, Revilla Y, Rodriguez F, Escribano JM 2018: ICTV Report C, ICTV virus taxonomy profile: asfarviridae. J Gen Virol 99: 613-614 <https://doi.org/10.1099/jgv.0.001049>
5. Arias M, Jurado C, Gallardo C, Fernandez-Pinero J, Sanchez-Vizcaino JM 2017: Gaps in African swine fever: Analysis and priorities. Transbound Emerg Dis 65 (Suppl 1): 235-247 <https://doi.org/10.1111/tbed.12695>
6. Emini EA, Hughes JV, Perlow DS, Boger J 1985: Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J Virol 55: 836-839 <https://doi.org/10.1128/jvi.55.3.836-839.1985>
7. Galindo I, Alonso C 2017: African swine fever virus: a review. Viruses: 9
8. Hernáez B, Tarragó T, Giralt E, Escribano JM, Alonso C 2010: Small peptide inhibitors disrupt a high-affinity interaction between cytoplasmic dynein and a viral cargo protein. J Virol 84: 10792-10801 <https://doi.org/10.1128/JVI.01168-10>
9. Jespersen MC, Peters B, Nielsen M, Marcatili P 2017: BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res (Web Server Issue) 45: W24-W29 <https://doi.org/10.1093/nar/gkx346>
10. Jia N, Ou Y, Pejsak Z, Zhang Y, Zhang J 2017: Roles of African swine fever virus structural proteins in viral infection. J Vet Res 6: 135-143 <https://doi.org/10.1515/jvetres-2017-0017>
11. Khanum S, Carbone V, Gupta SK 2022: Mapping immunogenic epitopes of an adhesin-like protein from Methanobrevibacter ruminantium M1 and comparison of empirical data with in silico prediction methods. Sci Rep 12: 10394 <https://doi.org/10.1038/s41598-022-14545-8>
12. Kolaskar AS, Tongaonkar PC 1990: A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett 276: 172-174 <https://doi.org/10.1016/0014-5793(90)80535-Q>
13. Mima KA, Burmakina GS, Titov IA, Malogolovkin AS 2015: African swine fever CD2v in the context of immune response modulation: bioinformatic analysis of genetic variability and heterogeneity. Int J Agric Biol 50: 785-793
14. Nas JSB 2020: Predicting short peptide immunogenic B cell epitopes distinct in RHDV1 and RHDV2 of Oryctolagus cuniculus. Rabbit Genetics 10: Issue 1
15. Parker JM, Guo D, Hodges RS 1986: New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry 25: 5425-5432 <https://doi.org/10.1021/bi00367a013>
16. Petrovan V, Murgia MV, Wu P, Lowe AD, Jia W, Rowland RR 2020: Epitope mapping of African swine fever virus (ASFV) structural protein, p54. Virus Res 279: 197871 <https://doi.org/10.1016/j.virusres.2020.197871>
17. Rodriguez F, Alcaraz C, Eiras A, Yanez RJ, Rodriguez JM, Alonso C, Escribano JM 1994: Characterization and molecular basis of heterogeneity of the African swine fever virus envelope protein p54. J Virol 68: 7244-7252 <https://doi.org/10.1128/jvi.68.11.7244-7252.1994>
18. Rodríguez F, Ley V, Go´mez-Puertas P, García R, Rodríguez JF, Escribano JM 1996: The structural protein p54 is essential for African swine fever virus viability. Virus Res 40: 161-167 <https://doi.org/10.1016/0168-1702(95)01268-0>
19. Sánchez EG, Pérez-Núñez D, Revilla Y 2019: Development of vaccines against African swine fever virus. Virus Res 265: 150-155 <https://doi.org/10.1016/j.virusres.2019.03.022>
20. Sun H, Jacobs SC, Smith GL, Dixon LK, Parkhouse RME 1995: African swine fever virus gene j13L encodes a 25–27 kDa virion protein with variable numbers of repeats. J Gen Virol 76: 1117-1127 <https://doi.org/10.1099/0022-1317-76-5-1117>
21. Wang Y, Kang W, Yang W, Zhang J, Li D, Zheng H 2021: Structure of African swine fever virus and associated molecular mechanisms underlying infection and immunosuppression: a review. Front Immunol 12: 715582 <https://doi.org/10.3389/fimmu.2021.715582>
front cover
  • ISSN 0001-7213 (printed)
  • ISSN 1801-7576 (electronic)

Current issue

Archive