Acta Vet. Brno 2023, 92: 53-59

https://doi.org/10.2754/avb202392010053

Determination of African swine fever virus viability in meat during long-term storage and sous-vide cooking using cell culture and real-time PCR combined with palladium compound pre-treatment methods

Miroslava Krzyžánková1, Jana Prodělalová2, Magdaléna Krásna1, Petra Vašíčková1

1Veterinary Research Institute, Department of Microbiology and Antimicrobial Resistance, Research Group of Food and Environmental Virology, Brno, Czech Republic
2Veterinary Research Institute, Department of Infectious Diseases and Preventive Medicine, Research Group of Molecular Epidemiology of Viral Infections, Brno, Czech Republic

Received July 1, 2022
Accepted December 13, 2022

References

1. Bellini S, Rutili D, Guberti V 2016: Preventive measures aimed at minimizing the risk of African swine fever virus spread in pig farming systems. Acta Vet Scand 58: 82 <https://doi.org/10.1186/s13028-016-0264-x>
2. Bosch J, Rodríguez A, Iglesias I, Muñoz MJ, Jurado C, Sánchez-Vizcaíno JM, de la Torre A 2017: Update on the risk of introduction of African swine fever by wild boar into disease-free European union countries. Transbound Emerg Dis 64: 1424-1432 <https://doi.org/10.1111/tbed.12527>
3. Cechova M, Beinhauerova M, Babak V, Kralik P 2022: A viability assay combining palladium compound treatment with quantitative PCR to detect viable Mycobacterion avium subspp. paratubeculosis cells. Sci 12: 4769
4. Dee SA, Bauermann FV, Niederwerder MC, Singrey A, Clement T, de Lima M, Long C, Patterson G, Sheahan MA, Stoian AMM, Petrovan V, Jones CK, De Jong J, Ji J, Spronk GD, Minion L, Christopher-Hennings J, Zimmerman JJ, Rowland RRR, Nelson E, Sundberg P, Diel DG 2018: Survival of viral pathogens in animal feed ingredients under transboundary shipping models. Plos One 13: e0194509 <https://doi.org/10.1371/journal.pone.0194509>
5. Done S, Gresham A, Potter R, Chennells D 2001: PMWS and PDNS--two recently recognised diseases of pigs in the UK. In Pract 23: 14-21 <https://doi.org/10.1136/inpract.23.1.14>
6. EFSA AHAW Panel (EFSA Panel on Animal Health and Welfare), 2014. Scientific Opinion on African swine fever. EFSA Journal 12: 3628
7. Finney DJ 1964: The Spearman-Kärber method. In: Finney DJ (Ed): Statistical methods in biological assays. Second edn, Charles Griffin & Cc. London, 668 p.
8. Foddai ACG, Grant IR 2020: Methods for detection of viable foodborne pathogens: current state-of-art and future prospects. Appl Microbiol Biotechnol 104: 4281-4288 <https://doi.org/10.1007/s00253-020-10542-x>
9. Fraisse A, Niveau F, Hennechart-Collette C, Coudray-Meunier C, Martin-Latil S, Perelle S 2018: Discrimination of infectious and heat-treated norovirus by combining platinum compounds and real-time RT-PCR. Int J Food Microbiol 269: 64-74 <https://doi.org/10.1016/j.ijfoodmicro.2018.01.015>
10. Gallardo C, Nieto R, Soler A, Pelayo V, Fernández-Pinero J, Markowska-Daniel I, Pridotkas G, Nurmoja I, Granta R, Simón A, Pérez C, Martín E, Fernández-Pacheco P, Arias M 2015: Assessment of African swine fever diagnostic techniques as a response to the epidemic outbreaks in eastern European union countries: how to improve surveillance and control programs. J Clin Microbiol 53: 2555-2565 <https://doi.org/10.1128/JCM.00857-15>
11. Gaudreault NN, Madden DW, Wilson WC, Trujillo JD, Richt JA 2020: African swine fever virus: an emerging DNA arbovirus. Front Vet Sci 7: 215 <https://doi.org/10.3389/fvets.2020.00215>
12. Krasna M, Hrdy J, Prodelalova J, Vasickova P 2022: MOL-PCR and xMAP technology - a novel approach to the detection of African swine fever virus DNA. Acta Vet Brno 91: 141-148 <https://doi.org/10.2754/avb202291020141>
13. McKercher PD, Yedloutschnig RJ, Callis JJ, Murphy R, Panina GF, Civardi A, Bugnetti M, Foni E, Laddomada A, Scarano C, Scatozza F 1987: Survival of viruses in “Prosciutto di Parma” (Parma ham). Can Inst Food Technol J 20: 267-272 <https://doi.org/10.1016/S0315-5463(87)71198-5>
14. Mazur-Panasiuk N, Zmudsky J, Wozniakowski G 2019: African swine fever virus – persistence in different environmental condition and the possibility of its indirect transmission. J Vet Res 63: 303-310 <https://doi.org/10.2478/jvetres-2019-0058>
15. Mebus C, Arias M, Pineda JM, Tapiador J, House C, Sanchez-Vizcaino JM 1997: Survival of several porcine viruses in different Spanish dry-cured meat products. Food Chem 59: 555-559 <https://doi.org/10.1016/S0308-8146(97)00006-X>
16. Niederwerder MC 2021: Risks and mitigation of African swine fever virus in feed. Animals 11: 792 <https://doi.org/10.3390/ani11030792>
17. Omondi RO, Ojwach SO, Jaganyi D 2020: Review of comparative studies of cytotoxic activities of Pt(II), Pd(II), Ru(II)/(III) and Au(III) complexes, their kinetics of ligand substitution reactions and DNA/BSA interactions. Inorganica Chim Acta 512: 119883 <https://doi.org/10.1016/j.ica.2020.119883>
18. Zani L, Masiulis M, Bušauskas P, Dietze K, Pridotkas G, Globig A, Blome S, Mettenleiter T, Depner K, Karveliene B 2020: African swine fever virus survival in buries wild board carcasses. Transbound Emerg Dis 67: 2086-2092
front cover
  • ISSN 0001-7213 (printed)
  • ISSN 1801-7576 (electronic)

Current issue

Archive