Acta Vet. Brno 2023, 92: 79-88
https://doi.org/10.2754/avb202392010079
Effect of Tarantula cubensis alcoholic extract on tumour pathways in azoxymethane-induced colorectal cancer in rats
References
1. KS, Waly MI, Ali A, Essa MM, Farhat MF, Alsaif MA 2011: Dietary folate protects against azoxymethane-induced aberrant crypt foci development and oxidative stress in rat colon. Exp Biol Med 236: 1005-1011
<https://doi.org/10.1258/ebm.2011.011010>
2. JD, Xavier JM, Steer CJ, Rodrigues CM 2010: The role of p53 in apoptosis. Dis Med 9: 145-152
3. P, Sudhandiran G 2011: Luteolin inhibits cell proliferation during Azoxymethane-induced experimental colon carcinogenesis via Wnt/β-catenin pathway. Inves New Drugs 29: 273-284
<https://doi.org/10.1007/s10637-009-9359-9>
4. J, Dannappel M, Wan C, Firestein R 2020: Transcriptional regulation of Wnt/β-catenin pathway in colorectal cancer. Cells 9: 2125
<https://doi.org/10.3390/cells9092125>
5. G 1997: APC mutations in aberrant crypt foci and colonic tumors induced by azoxymethane in rats. Proc Am Assoc Cancer Res 38: 467
6. W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J 2016: Cancer statistics in China. 2015. CA: Cancer J Clin 66: 115-132
7. D, Atkin W, Lenz H, Lynch HT, Minsky B, Nordlinger B 2010: Colorectal cancer. Lancet 375: 1030-1047
<https://doi.org/10.1016/S0140-6736(10)60353-4>
8. Day C, Saxton J 1998: Veterinary Homeopathy: Principles and Practice. In: Schoen AM, Wynn SG (Eds): Complementary and Alternative Veterinary Medicine. First edn, St Louis, Missouri, USA, pp. 485-514
9. B, Er A, Corum O 2014: Effect of alcoholic extract of Tarantula cubensis (Theranekron®) on serum thiobarbituric acid-reactive species concentrations in sheep. Eurasian J Vet Sci 30: 68-71
10. A, Ozdemir O, Coskun D, Dik B, Bahcivan E, Faki HE, Yazar E 2019: Effects of Tarantula cubensis alcoholic extract and Nerium oleander distillate on experimentally induced colon cancer development. Rev Med Vet 45: 47
11. SH, Wu HD, Hixson LJ, Ahnen DJ, Gerner EW 1997: Assessment of mutations in Ki-ras and p53 in colon cancers from azoxymethane‐and dimethylhydrazine-treated rats. Published in cooperation with the University of Texas MD Anderson Cancer Center. Mol Carcinog 19: 137-144
<https://doi.org/10.1002/(SICI)1098-2744(199707)19:2<137::AID-MC8>3.0.CO;2-C>
12. S, Mihara M, Kim RH, Petrenko O, Moll UM 2004: In vivo mitochondrial p53 translocation triggers a rapid first wave of cell death in response to DNA damage that can precede p53 target gene activation. Mol Cell Biol 24: 6728-6741
<https://doi.org/10.1128/MCB.24.15.6728-6741.2004>
13. ER, Vogelstein B 1990: A genetic model for colorectal tumorigenesis. Cell 61: 759-767
<https://doi.org/10.1016/0092-8674(90)90186-I>
14. DC, Pereira Rangel L, Martins-Dinis MMDDC, Ferretti GDDS, Ferreira VF, Silva JL 2020: Anticancer potential of resveratrol, β-lapachone and their analogues. Molecules 25: 893
<https://doi.org/10.3390/molecules25040893>
15. A, Little N, Jagadeeswaran S, Dougherty U, Sehdev A, Mustafi R, Cerda S, Yuan W, Khare S, Tretiakova M 2007: Epidermal growth factor receptor signaling is required for microadenoma formation in the mouse azoxymethane model of colonic carcinogenesis. Cancer Res 67: 827-835
<https://doi.org/10.1158/0008-5472.CAN-05-3343>
16. A, Nami B, Amirmozafari N 2017: Tarantula cubensis venom (Theranekron®) selectively destroys human cancer cells via activating caspase-3-mediated apoptosis. Acta Medica Int 4: 74
17. RH, Van Es JH, Clevers H 2003: Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta Rev Cancer 1653: 1-24
<https://doi.org/10.1016/S0304-419X(03)00005-2>
18. N, Guvenc T, Kaya D, Agaoglu AR, Ay SS, Kucukaslan I, Emre B, Findik M, Schäfer-Somi S, Aslan S 2015: Tarantula cubensis extract alters the degree of apoptosis and mitosis in canine mammary adenocarcinomas. J Vet Sci 16: 213-219
<https://doi.org/10.4142/jvs.2015.16.2.213>
19. N, Vural MR 2007: The effect of Tarantula cubensis extract applied in pre and postoperative period of canine mammary tumours. J İstanbul Vet Sci 2: 13-23
20. M-J, Harris BR, Miskimins WK, Cleary MP, Yang D-Q 2015: Deregulation of internal ribosome entry site-mediated p53 translation in cancer cells with defective p53 response to DNA damage. Mol Cell Biol 35: 4006-4017
<https://doi.org/10.1128/MCB.00365-15>
21. T-C, Sparks AB, Rago C, Hermeking H, Zawel L, Da Costa LT, Morin PJ, Vogelstein B, Kinzler KW 1998: Identification of c-MYC as a target of the APC pathway. Science 281: 1509-1512
<https://doi.org/10.1126/science.281.5382.1509>
22. A, Kolligs FT 2007: Wnt signaling as a therapeutic target for cancer. Target Discovery and Validation Reviews and Protocols 361: 63-91
<https://doi.org/10.1385/1-59745-208-4:63>
23. M, Guevara-González RG, Cruz-Hernández A, Guevara-Olvera L, Bello-Pérez LA, Castaño-Tostado E, Loarca-Piña G 2013: Flaxseed (Linum usitatissimum L.) and its total non-digestible fraction influence the expression of genes involved in azoxymethane-induced colon cancer in rats. Plant Foods Hum Nutr 68: 259-267
<https://doi.org/10.1007/s11130-013-0372-y>
24. Y, Le Leu RK, Young GP 2009: Detection of K-ras mutations in azoxymethane-induced aberrant crypt foci in mice using LNA-mediated real-time PCR clamping and mutant-specific probes. Mutat Res Genet Toxicol Environ Mutagen 677: 27-32
<https://doi.org/10.1016/j.mrgentox.2009.05.003>
25. A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ 2008: Cancer statistics. CA: Cancer J Clin 58: 71-96
26. M, Eraslan G, Kanbur M, Sarıca ZS 2015: Effects of Tarantula cubensis D6 on aflatoxin-induced injury in biochemical parameters in rats. Homeopathy 104: 205-210
<https://doi.org/10.1016/j.homp.2015.02.005>
27. S, Cerda S, Wali RK, Von Lintig FC, Tretiakova M, Joseph L, Stoiber D, Cohen G, Nimmagadda K, Hart J 2003: Ursodeoxycholic acid inhibits Ras mutations, wild-type Ras activation, and cyclooxygenase-2 expression in colon cancer. Cancer Res 63: 3517-3523
28. Y, Takata N, Jinnai T, Morisawa T, Shiota G, Kawasaki H, Hasegawa J 2000: Sulindac and a cyclooxygenase-2 inhibitor, etodolac, increase APC mRNA in the colon of rats treated with azoxymethane. Gut 47: 812-819
<https://doi.org/10.1136/gut.47.6.812>
29. Y, Yashima K, Morisawa T, Shiota G, Kawasaki H, Hasegawa J 2002: Effects of cyclooxygenase-2 inhibitor NS-398 on APC and c-myc expression in rat colon carcinogenesis induced by azoxymethane. J Gastroenterol 37: 186-193
<https://doi.org/10.1007/s005350200019>
30. S, Nosho K, Baba Y, Irahara N, Shima K, Ng K, Meyerhardt JA, Giovannucci EL, Fuchs CS, Ogino S 2009: Vitamin D receptor expression is associated with PIK3CA and KRAS mutations in colorectal cancer. Cancer Epidemiol Biomark Prev 18: 2765-2772
<https://doi.org/10.1158/1055-9965.EPI-09-0490>
31. CS, Li S, Liu CB, Miyauchi Y, Suzawa M, Ho CT, Pan MH 2013: Effective suppression of azoxymethane-induced aberrant crypt foci formation in mice with citrus peel flavonoids. Mol Nutr Food Res 57: 551-555
<https://doi.org/10.1002/mnfr.201200606>
32. J, Mizukami Y, Zhang X, Jo W-S, Chung DC 2005: Oncogenic K-ras stimulates Wnt signaling in colon cancer through inhibition of GSK-3β. Gastroenterology 128: 1907-1918
<https://doi.org/10.1053/j.gastro.2005.02.067>
33. C, Lippi G 2019: Current cancer epidemiology. J Epidemiol Glob Health 9: 217-222
<https://doi.org/10.2991/jegh.k.191008.001>
34. L, Migheli F, Spisni R, Coppedè F 2011: Genetics, cytogenetics, and epigenetics of colorectal cancer. J Biomed Biotechnol 2011: 792362
<https://doi.org/10.1155/2011/792362>
35. M, Wilder S, Bannasch D, Israeli D, Lehlbach K, Li-Weber M, Friedman SL, Galle PR, Stremmel W, Oren M 1998: p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J Exp Med 1998 188: 2033-2045
36. S, Norhaizan M, Hairuszah I, Norashareena M 2010: Anticarcinogenic efficacy of phytic acid extracted from rice bran on azoxymethane-induced colon carcinogenesis in rats. Exp Toxicol Pathol 62: 259-268
<https://doi.org/10.1016/j.etp.2009.04.002>
37. FA, Tan D, Baltodano JD, Khoury T, Gibbs JF, Hassid VJ, Ahmed BH, Alrawi SJ 2008: Aberrant crypt foci as precursors in colorectal cancer progression. J Surg Oncol 98: 207-213
<https://doi.org/10.1002/jso.21106>
38. PVSP, Bodiga S, Bodiga VL 2020: Dietary phytate lowers K-ras mutational frequency, decreases DNA-adduct and hydroxyl radical formation in azoxymethane-induced colon cancer. Iran J Basic Med Sci 23: 20
39. A, Wang Q-S, Papanikolaou D, Whiteley HE, Rosenberg DW 2000: Sequential and morphological analyses of aberrant crypt foci formation in mice of differing susceptibility to azoxymethane-induced colon carcinogenesis. Carcinogenesis 21: 1567-1572
<https://doi.org/10.1093/carcin/21.8.1567>
40. MW 2001: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29: e45
<https://doi.org/10.1093/nar/29.9.e45>
41. Richter Pharma 2018: https://www.richter-pharma.at/product-theranekron-d6_301.htm. Accessed June 4, 2018
42. UF, Aslam MN, Ansari MN, Khan M 2018: Role of aspirin as prophylaxis against colorectal cancer. J Postgrad Med Inst 29: 16-19
43. B, El-Shemi AG, Kensara OA, Mohamed AM, Idris S, Ahmad J, Khojah A 2015: Vitamin D3 enhances the tumouricidal effects of 5-Fluorouracil through multipathway mechanisms in azoxymethane rat model of colon cancer. J Exp Clin Cancer Res 34: 1-15
<https://doi.org/10.1186/s13046-015-0187-9>
44. C 2002: The brown spider Loxosceles laeta: source of the remedy Tarentula cubensis? Homeopathy 91: 166-170
<https://doi.org/10.1054/homp.2002.0029>
45. JK, Fei P, Murphy ME, Bernhard E, Korsmeyer SJ, El-Deiry WS 2002: BID regulation by p53 contributes to chemosensitivity. Nat Cell Biol 4: 842-849
<https://doi.org/10.1038/ncb866>
46. Schulz W 2005: Molecular Biology of Human Cancers: An Advanced Student’s Textbook. Springer Science & Business Media press, Dordrecht, Netherlands, 508 p.
47. MV, Fuccelli R, Rosignoli P, Ricci G, Servili M, Fabiani R 2016: Oleuropein prevents azoxymethane-induced colon crypt dysplasia and leukocytes DNA damage in A/J mice. J Med Food 19: 983-989
<https://doi.org/10.1089/jmf.2016.0026>
48. VK, Arora D, Ansari MI, Sharma PK 2019: Phytochemicals based chemopreventive and chemotherapeutic strategies and modern technologies to overcome limitations for better clinical applications. Phytother Res 33: 3064-3089
<https://doi.org/10.1002/ptr.6508>
49. G, Lu Y, Yu Z, Xu L, Liu J, Chen K, Zhang P 2019: The inhibitory effect of polysaccharide from Rhizopus nigricans on colitis-associated colorectal cancer. Biomed Pharmacother 112: 108593
<https://doi.org/10.1016/j.biopha.2019.01.054>
50. M, Mutoh M, Kawamori T, Sugimura T, Wakabayashi K 2000: Altered expression of β-catenin, inducible nitric oxide synthase and cyclooxygenase-2 in azoxymethane-induced rat colon carcinogenesis. Carcinogenesis 21: 1319-1327
<https://doi.org/10.1093/carcin/21.7.1319>
51. M, Wakabayashi K 2004: Gene mutations and altered gene expression in azoxymethane-induced colon carcinogenesis in rodents. Cancer Sci 95: 475-480
<https://doi.org/10.1111/j.1349-7006.2004.tb03235.x>
52. IY, Cataldo JK, Aouizerat BE, Dhruva A, Miaskowski C 2016: A review of the literature on multiple co-occurring symptoms in patients with colorectal cancer who received chemotherapy alone or chemotherapy with targeted therapies. Cancer Nurs 39: 437
<https://doi.org/10.1097/NCC.0000000000000343>

