Acta Vet. Brno 2023, 92: 181-187
https://doi.org/10.2754/avb202392020181
Boar taint through the eyes of genetics: A comparison of the Czech indigenous pig breed and commercial breeds in four gene polymorphisms related to skatole and androstenone levels
References
1. 2011: Influence of breed and slaughter weight on boar taint prevalence in entire male pigs. Animal 5: 1283-1289
< M, Millet S, Bekaert KM, Tuyttens FA, Vanhaecke L, De Smet S, De Brabander DL https://doi.org/10.1017/S1751731111000164>
2. 1999: Association of cytochrome b5 with 16-androstene steroid synthesis in the testis and accumulation in the fat of male pigs. Anim Sci J 77: 1230-1235
< SM, Squires EJ https://doi.org/10.2527/1999.7751230x>
3. 2000: Metabolism of 3-methylindole by porcine liver microsomes: responsible cytochrome P450 enzymes. Toxicol Sci 55: 284-292
< GJ, Squires EJ https://doi.org/10.1093/toxsci/55.2.284>
4. Doran E, Whittington FW, Wood JD, McGivan JD 2002: Cytochrome P450IIE1 (CYP2E1) is induced by skatole and this induction is blocked by androstenone in isolated pig hepatocytes.
5. 2004: Characterisation of androstenone metabolism in pig liver microsomes. Chem-Biol Interact 147: 141-149
< E, Whittington FM, Wood JD, McGivan JD https://doi.org/10.1016/j.cbi.2003.12.002>
6. 2017: Differential expression and co-expression gene networks reveal candidate biomarkers of boar taint in non-castrated pigs. Sci Rep 7: 1-18
< M, Skinkyté-Juskiené R, Do DN, Kogelman LJ, Kadarmideen HN https://doi.org/10.1038/s41598-017-11928-0>
7. 2021: Recent genetic advances on boar taint reduction as an alternative to castration: a review. J Appl Genet 62: 137-150
< D, Schroyen M, Mota RR, Vanderick S, Gengler N https://doi.org/10.1007/s13353-020-00598-w>
8. 2013: Effects of hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1 polymorphisms on fat androstenone level and gene expression in Duroc pigs. Anim Genet 44: 592-595
< JM, Ahn JH, Lim KS, Lee EA, Chun T, Hong KC https://doi.org/10.1111/age.12041>
9. 2005: A novel polymorphism in the 5’ untranslated region of the porcine cytochrome b5 (CYB5) gene is associated with decreased fat androstenone level. Mamm Genome 16: 367-373
< Z, Lou Y, Peacock J, Squires EJ https://doi.org/10.1007/s00335-004-2439-4>
10. 2006: Functional polymorphism in porcine CYP2E1 gene: Its association with skatole levels. J Steroid Biochem Mol Biol 99: 231-237
< Z, Lou Y, Squires EJ https://doi.org/10.1016/j.jsbmb.2005.07.001>
11. 2013: Genetic relationship between boar taint compounds, human nose scores, and reproduction traits in pigs. Anim Sci J 91: 4080-4089
< PK, ten Napel J, Crump RE, Mulder HA, Knol EF https://doi.org/10.2527/jas.2013-6478>
12. 2007: Gene expression profiles in testis of pigs with extreme high and low levels of androstenone. BMC Genom 8: 1-16
< M, Meuwissen T, Lien S, Bendixen C, Wang X, Conley LN, Berget I, Tajet H, Grindflek E https://doi.org/10.1186/1471-2164-8-405>
13. 2008: Gene expression profiles in liver of pigs with extreme high and low levels of androstenone. BMC Vet Res 4: 1-16
< M, Lien S, Bendixen C, Hedegaard J, Hornshřj H, Berget I, Meuwissen THE, Grindflek E https://doi.org/10.1186/1746-6148-4-29>
14. 2012: A single nucleotide polymorphism in the CYP2E1 gene promoter affects skatole content in backfat of boars of two commercial Duroc-sired crossbred populations. Meat Sci 92: 739-744
< D, Lungershausen M, Steinke K, Sharifi AR, Knorr C https://doi.org/10.1016/j.meatsci.2012.06.031>
15. Muñoz M, Bozzi R, García F, Núñez Y, Geraci C, Crovetti A, García-Casco J, Alves E, Škrlep M, Charneca R, Martins JM, Quintanilla R, Tibau J, Kušec G, Djurkin-Kušec I, Mercat MJ, Riquet J, Estellé J, Zimmer C, Razmaite V, Araujo JP, Radović Č, Savić R, Karolyi D, Gallo M, Čandek-Potokar M, Fontanesi L, Fernández AI, Óvilo C 2018: Diversity across major and candidate genes in European local pig breeds. PLoS One 13
<https://doi.org/10.1371/journal.pone.0207475>
16. 2008: The effect of a c.‐8G>T polymorphism on the expression of cytochrome b5A and boar taint in pigs. Anim Genet 39: 15-21
< J, Lou Y, Lundström K, Squires EJ https://doi.org/10.1111/j.1365-2052.2007.01674.x>
17. 2011: Expression levels of 25 genes in liver and testis located in a QTL region for androstenone on SSC7q1.2. Anim Genet 42: 662-665
< A, Fève K, Larzul C, Billon Y, van Son M, Liaubet L, Sarry J, Milan D, Grindflek E, Bidanel JP, Riquet J https://doi.org/10.1111/j.1365-2052.2011.02195.x>
18. 2012: Molecular characterization of the porcine TEAD3 (TEF‐5) gene: examination of a promoter mutation as the causal mutation of a quantitative trait loci affecting the androstenone level in boar fat. J Anim Breed Genet 129: 325-335
< A, Larzul C, Grindflek E, Chevillon P, Hofer A, Fève K, Iannuccelli N, Milan D, Prunier A, Riquet J https://doi.org/10.1111/j.1439-0388.2011.00979.x>
19. 2014: Pathways and genes involved in steroid hormone metabolism in male pigs: a review and update. J Steroid Biochem Mol Biol 140: 44-55
< A, Faraut T, Prunier A https://doi.org/10.1016/j.jsbmb.2013.11.001>
20. 2008: genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8: 103-106
< F https://doi.org/10.1111/j.1471-8286.2007.01931.x>
21. Václavková E, Bělková J 2019: Přeštické černostrakaté prase – tradice a perspektivy (in Czech, Přeštice Black Pied Pig - Traditions and perspectives). The Agrarian Chamber of the Czech Republic, Prague, 40 p.
22. 2008: Effect of polymorphism in the porcine cytochrome b5 (CYB5A) gene on androstenone and skatole concentrations and sexual development in Swedish pig populations. Animal 2: 190-196
< G, Lou Y, Peacock J, Rydhmer L, Andersson HK, Juneja RK, Chen G, Lundström K, Squires EJ https://doi.org/10.1017/S1751731107001103>