Acta Vet. Brno 2023, 92: 279-287

https://doi.org/10.2754/avb202392030279

Feasible delivery system based on poly(lactictide-co-glycolide) nanoparticles loaded with antimicrobial mupirocin for possible wound healing

Ludmila Košarišťanová1, Tomáš Komprda2, Vendula Popelková2, Tatiana Fialová1, Pavla Vymazalová2, Carlos E. Astete3

1Mendel University in Brno, Faculty of AgriSciences, Department of Chemistry and Biochemistry, Brno, Czech Republic
2Mendel University in Brno, Faculty of AgriSciences, Department of Food Technology, Brno, Czech Republic
3Louisiana State University, College of Engineering, Department of Biological and Agricultural Engineering, Baton Rouge, Louisiana, USA

Received January 9, 2023
Accepted July 11, 2023

References

1. Abo-Amer AE, Gad el-Rab SMF, Halawani EM, Niaz AM, Bamaga MS 2022: Prevalence and molecular characterization of methicilin-resistant Staphylococcus aureus from nasal specimens: Overcoming MRSA with silver nanoparticles and their applications. J Microbiol Biotechnol 32: 1-10 <https://doi.org/10.4014/jmb.2208.08004>
2. Alcantara KP, Zulfakar MH, Castillo AL 2019: Development, characterization and pharmacokinetics of mupirocin-loaded nanostructured lipid carriers (NLCs) for intravascular administration. Int J Pharm 571: 118705 <https://doi.org/10.1016/j.ijpharm.2019.118705>
3. Arasoglu T, Derman S, Mansuroglu B 2016: Comparative evaluation of antibacterial aktivity of caffeic acid phenethyl ester and PLGA nanoparticles formulation by different methods. Nanotechnology 27: 025103 <https://doi.org/10.1088/0957-4484/27/2/025103>
4. Astete CE, Sabliov CM 2006: Synthesis and characterization of PLGA nanoparticles. J Biomater Sci–Polym Ed 17: 247-289 <https://doi.org/10.1163/156856206775997322>
5. Basaran DDA, Gunduz U, Tezcaner A, Keskin D 2021: Topical delivery of heparin from PLGA nanoparticles entrapped in nanofibers of sericin/gelatin scaffolds for wound healing. Int J Pharm 597: 120207 <https://doi.org/10.1016/j.ijpharm.2021.120207>
6. Berthet M, Gauthier Y, Lacroix C, Verrier B, Monge C 2017: Nanoparticle-based dressing: The future of wound treatment? Trends Biotechnol 35: 770-784 <https://doi.org/10.1016/j.tibtech.2017.05.005>
7. Burmistrov DE, Simakin AV, Smirnova VV, Uvarov OV, Ivashkin PI, Kucherov RN, Ivanov VE, Bruskov VI, Sevostyanov MA, Baikin AS, Kozlov VA, Rebezov MB, Semenova AA, Lisitsyn AB, Vedunova MV, Gudkov SV 2022: Bacteriostatic and cytotoxic properties of composite material based on ZnO nanoparticles in PLGA obtained by low temperature method. Polymers 14: 49 <https://doi.org/10.3390/polym14010049>
8. Cheng YH, Chang YF, Ko YC, Liu CJL 2021: Development of a dual delivery of levofloxacin and prednisolone acetate via PLGA nanoparticles/thermosensitive chitosan-based hydrogel for postoperative management: An in-vitro and ex-vivo study. Int J Biol Macromol 180: 365-374 <https://doi.org/10.1016/j.ijbiomac.2021.03.017>
9. Chereddy KK, Her CH, Comune M, Moia C, Lopes A, Porporato PE, Vanacker J, Lam MC, Steinstraesser L, Sonveaux P, Huijun Z, Lino SF, Vandermeulen G, Préat V 2014: PLGA nanoparticles loaded with host defense peptide LL37 promote wound healing. J Control Release 194: 138-147 <https://doi.org/10.1016/j.jconrel.2014.08.016>
10. Chiu HI, Samad NA, Fang L, Lim V 2021: Cytotoxicity of targeted PLGA nanoparticles: a systematic review. RCS Advances 11: 9433-9449
11. Goldmann O, Cern A, Musken M, Rohde M, Weiss W, Barenholz Y, Medina E 2019: Liposomal mupirocin holds promise for systemic treatment of invasive Staphylococcus aureus infections. J Control Release 316: 292-301 <https://doi.org/10.1016/j.jconrel.2019.11.007>
12. Hajipour MJ, Fromm KM, Ashkarran AA, de Aberasturi DJ, de Larramendi, IR, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M 2012: Antibacterial properties of nanoparticles. Trends Biotechnol 30: 499-511 <https://doi.org/10.1016/j.tibtech.2012.06.004>
13. Hasan N, Cao J, Lee J, Hlaing SP, Oshi MA, Naeem M, Ki MH, Lee BL, Jung Y, Yoo JW 2019: Bacteria-targeted clindamycin loaded polymeric nanoparticles: Effect of surface charge on nanoparticle adhesion to MRSA, antibacterial activity, and wound healing. Pharmaceutics 11: 11050236
14. He YZ, Jin YH, Wang XM, Yao SL, Li YY, Wu Q, Ma GW, Cui FZ, Liu HY 2018: An antimicrobial peptide-loaded gelatin/chitosan nanofibrous membrane fabricated by sequential layer-by-layer electrospinning and electrospraying techniques. Nanomaterials 8: 327 <https://doi.org/10.3390/nano8050327>
15. International Organization for Standardization, ISO 10993-5. Biological evaluation of medical services, Part 5: Tests for in vitro cytotoxicity. Geneva, Switzerland 2009.
16. Kemme M, Heinzel-Wieland R 2018: Quantitative assessment of antimicrobial activity of PLGA films loaded with 4-hexylresorcinol. J Funct Biomater 9: 9010004 <https://doi.org/10.3390/jfb9010004>
17. Khoshnood S, Heidary M, Asadi A, Soleimani S, Motahar M, Savari M, Saki M, Abdi M 2019: A review on mechanism of action, resistance, synergism, and clinical implications of mupirocin against Staphylococcus aureus. Biomed Pharmacother 109: 1809-1818 <https://doi.org/10.1016/j.biopha.2018.10.131>
18. Komprda T, Popelková V, Košarišťanová L, Šmídová V 2022a: Poly(lactic-co-glycolic) acid nanoparticles as a delivery system for fish oil in wound healing. Acta Vet Brno 91: 285-291 <https://doi.org/10.2754/avb202291030285>
19. Komprda T, Sládek Z, Vícenová M, Simonová J, Franke G, Kacvinská K, Sabliov S, Astete CE, Levá L, Popelková V, Bátik A, Vojtová L 2022b: Effect of polymeric nanoparticles with entrapped fish oil or mupirocin on skin wound healing using a porcine model. Int J Mol Sci 23: 7663 <https://doi.org/10.3390/ijms23147663>
20. Kourmouli A, Valenti M, van Rijn E, Beaumont HJE, Kalantzi OI, Schmidt-Ott A, Biskos G 2018: Can disc diffusion susceptibility tests assess the antimicrobial activity of engineered nanoparticles? J Nanopart Res 20: 62 <https://doi.org/10.1007/s11051-018-4152-3>
21. Lin YH, Lin JH, Hong YS 2017: Development of chitosan/poly-gamma-glutamic acid/pluronic/curcumin nanoparticles in chitosan dressings for wound regeneration. J Biomed Mater Res B 105: 81-90 <https://doi.org/10.1002/jbm.b.33394>
22. Ma P, Mumper RJ 2013: Anthracycline nano-delivery systems to overcome multiple drug resistance: A comprehensive review. Nano Today 8: 313-331 <https://doi.org/10.1016/j.nantod.2013.04.006>
23. Mutu E, Chen G, Liu R, Wang Y 2022: High prevalence of heterogeneous mupirocin-resistent Staphylococcus aureus and its molecular characterization. Am J Translat Res 14: 8243-8251
24. Naseri E, Cartmell C, Saab M, Kerr RG, Ahmadi A 2020: Development of 3D printed drug-eluting scaffolds for preventing piercing infection. Pharmaceutics 12: 901 <https://doi.org/10.3390/pharmaceutics12090901>
25. Perumal PG, Kannan S, Appalaraju B 2022: Detection and distribution of low level and high level mupirocin resistance among clinical methicillin resistant Staphylococcus aureus isolates. J Clin Diagnos Res 16: DC06-DC10
26. Pourhojat F, Shariati S, Sohrabi M, Mahdavi H, Asadpour L 2018: Preparation of antibacterial electrospun polylactic-co-glycolic acid nanofibers containing Hypericum perforatum with bedsore healing property and evaluation of tis drug release performance. Int J Nano Dimens 9: 286-297
27. Rajendran NK, Kumar SSD, Houreld NN, Abrahamse H 2018: A review on nanoparticle based treatment for wound healing. J Drug Deliv Sci Technol 44: 421-430 <https://doi.org/10.1016/j.jddst.2018.01.009>
28. Smith R, Russo J, Fiegel J, Brogden N 2020: Antibiotic delivery strategies to treat skin infections when innate antimicrobial defense fails. Antibiotics-Basel 9: 9020056
29. Sundaramoorthy M, Karuppaiah A, Nithyanth M, Baberoselin R, Ramesh S, Geetha N, Veintramuthu S 2021: Formulation development of cream with mupirocin and essential oils for eradication of biofilm mediated antimicrobial resistance. Arch Microbiol 203: 1707-1715 <https://doi.org/10.1007/s00203-020-02175-5>
30. Tang ZY, Ma QT, Chen XL, Chen TB, Ying Y, Xi XP, Wang L, Ma CB, Shaw C, Zhou M 2021: Recent advances and challenges in nanodelivery systems for antimicrobial peptides (AMPs). Antibiotics-Basel 10: 10080990
31. Van de Ven H, Vermeersch M, Matheeussen A, Vandervoort J, Weyenberg W, Apers S, Cos P, Maes L, Ludwig A 2011: PLGA nanoparticles loaded with the antileishmanial saponin β-aescin: Factor influence study and in vitro efficacy evaluation. Int J Pharm 420: 122-132 <https://doi.org/10.1016/j.ijpharm.2011.08.016>
32. Vymazalova P, Popelkova V, Komprda T, Sabliov C, Astete CE 2020: Synthesis of PLGA nanoparticles with entrapped antibiotic mupirocin. Proc Int PhD Stud Conf Mendel Net pp. 589-593
front cover
  • ISSN 0001-7213 (printed)
  • ISSN 1801-7576 (electronic)

Current issue

Archive