Acta Vet. Brno 2023, 92: 389-396
https://doi.org/10.2754/avb202392040389
Use of high-fat high-fructose diet for a model of metabolic syndrome in Wistar rats: challenges remain
References
1. A, Takic M, Kojadinovic M, Petrovic S, Paunovic M, Vucic V, Ristic-Medic D 2020: Metabolically healthy obesity: is there a link with polyunsaturated fatty acid intake and status? Can J Physiol Pharmacol 99: 64-71
<https://doi.org/10.1139/cjpp-2020-0317>
2. G, Cavallo P, Ciacci C, Cirillo M 2019: Dietary protein, kidney function and mortality: review of the evidence from epidemiological studies. Nutrients 11: 196
<https://doi.org/10.3390/nu11010196>
3. L, Panchal SK 2011: Rodent models for metabolic syndrome research. J Biotechnol Biomed 2011: 351982
4. C, Azzout-Marniche D, Blais A, Piedcoq J, Tomé D, Gaudichon P, Even PC 2019: Low protein andmethionine, high starch diets increase energy intake and expenditure, increase FGF21, decrease IGF-1, and has little effect on adiposityin mice. Am J Physiol Regul Integr Comp Physiol 316: R486-R501
<https://doi.org/10.1152/ajpregu.00316.2018>
5. UGM, dos Santos RAS, Silva ME, de Lima WG, Campagnole-Santos MJ, Alzamora AC 2013: Age-dependent effect of high-fructose and high-fat diets on lipid metabolism and lipid accumulation in liver and kidney of rats. Lipids Health Dis 12: 136
<https://doi.org/10.1186/1476-511X-12-136>
6. R, Klein J, Caubet C, Breuil B, Siwy J, Hoffman J, Sicard L, Ducassé L, Rascalou S, Payre B, Buléon M 2013: Long term metabolic syndrome induced by a high fat high fructose diet leads to minimal renal injury in C57BL/6 mice. PloS one 8: e76703
<https://doi.org/10.1371/journal.pone.0076703>
7. N, Hojná S, Zicha J, Vaněčková I 2020: Contribution of selected vasoactive systems to blood pressure regulation in two models of chronic kidney disease. Physiol Res 69: 405-414
<https://doi.org/10.33549/physiolres.934392>
8. J, Feray A, Goanvec C, Guernec A, Samson N, Bougaran P, Guerrero F, Mansourati J 2017: Metabolic syndrome and hypertension resulting from fructose enriched diet in Wistar rats. Biomed Res Int 2017: 2494067
<https://doi.org/10.1155/2017/2494067>
9. R, Paul N, Mouatt P, Majzoub ME, Thomas T, Panchal SK, Brown L 2020: Carrageenans from the red seaweed Sarconema filiforme attenuate symptoms of diet-induced metabolic syndrome in rats. Mar Drugs 18: 97
<https://doi.org/10.3390/md18020097>
10. HM, Shaltout HA 2015: Allopurinol alleviates hypertension and proteinuria in high fructose, high salt and high fat induced model of metabolic syndrome. Transl Res 165: 621-630
<https://doi.org/10.1016/j.trsl.2014.11.008>
11. PC, Gehring J, Tomé D 2021: What does self‐selection of dietary proteins in rats tell us about protein requirements and body weight control? Obes Rev 22: e13194
<https://doi.org/10.1111/obr.13194>
12. S, Zhelyazkova-Savova M 2020: Are bisphosphonates associated with adverse metabolic and cognitive effects? A study in intact rats and rats fed high-fat high-fructose diet. Calcif Tissue Int 107: 41-51
<https://doi.org/10.1007/s00223-020-00684-5>
13. RC, Carter E 2019: The 3Rs and humane experimental technique: implementing change. Animals 9: 754
<https://doi.org/10.3390/ani9100754>
14. Kwitek AE 2019: Rat Models of Metabolic Syndrome. In: Hayman G, Smith J, Dwinell M, Shimoyama M (Eds): Rat Genomics. Methods in Molecular Biology. Vol 2018. Humana, New York, NY, USA
15. D, Giordano F, Marrone A, Parafati M, Janda E, Pellegrino D 2019: Oxidative imbalance and kidney damage in cafeteria diet-induced rat model of metabolic syndrome: effect of bergamot polyphenolic fraction. Antioxidants 8: 66
<https://doi.org/10.3390/antiox8030066>
16. C, Mokotedi LP, Millen AME, Michel FS 2019: Increased systolic blood pressure associated with hypertriglyceridemia in female Sprague-Dawley rats. Can J Physiol Pharmacol 97: 971-979
<https://doi.org/10.1139/cjpp-2019-0121>
17. AA, Adeyemi WJ, David UE, Ajibade TO, Adejumobi OA, Omobowale TO, Oyagbemi AA, Fasanmade AA 2021: D-ribose-L-cysteine prevents oxidative stress and cardiometabolic syndrome in high fructose high fat diet fed rats. Biomed Pharmacother 142: 112017
<https://doi.org/10.1016/j.biopha.2021.112017>
18. S, O’Driscoll L 2015: Metabolic syndrome: A closer look at the growing epidemic and its associated pathologies. Obes Rev 16: 1-12
<https://doi.org/10.1111/obr.12229>
19. SK, Poudyal H, Iyer A, Nazer R, Alam A, Diwan V, Kauter K, Sernia C, Campbell F, Ward L, Gobe G, Fenning A, Brown L 2011: High-carbohydrate high-fat diet–induced metabolic syndrome and cardiovascular remodeling in rats. J Cardiovasc Pharmacol 557: 51-64
<https://doi.org/10.1097/FJC.0b013e3181feb90a>
20. C, Panagiotakos D, Weinem M, Stefanadis C 2006: Diet, exercise and the metabolic syndrome. Rev Diabet Stud 3: 118-126
<https://doi.org/10.1900/RDS.2006.3.118>
21. B, García-Ruiz E, Díaz-Rúa R, Palou A, Oliver P 2014: Reversion to a control balanced diet is able to restore body weight and to recover altered metabolic parameters in adult rats long-term fed on a cafeteria diet. Food Res Int 64: 839-848
<https://doi.org/10.1016/j.foodres.2014.08.012>
22. E, González-Pérez I, Clavel-Pérez PI, Contreras-Vargas Y, Carvajal K 2020: Biochemical and nutritional overview of diet-induced metabolic syndrome models in rats: what is the best choice? Nutr Diabetes 10: 24
<https://doi.org/10.1038/s41387-020-0127-4>
23. MG 2018: The global epidemic of the metabolic syndrome. Curr Hypertens Rep 20: 12
<https://doi.org/10.1007/s11906-018-0812-z>
24. P 2013: The laboratory rat. Relating its age with human’s. Int J Prev Med 4: 624-630
25. RM, Ribeiro NL, Pinto BA, Sanches JR, da Silva MU, Coęlho CF, França LM, de Figueiredo Neto JA, Paes AM 2018: Long-term high-protein diet intake reverts weight gain and attenuates metabolic dysfunction on high-sucrose-fed adult rats. Nutr Metab 15: 1-3
<https://doi.org/10.1186/s12986-018-0290-y>
26. KL 2016: Sugar consumption, metabolic disease and obesity: The state of the controversy. Crit Rev Clin Lab Sci 53: 52-67
<https://doi.org/10.3109/10408363.2015.1084990>
27. KM, Deng L, Bluethmann SM, Zhou S, Trifiletti DM, Jiang C, Kelly SP, Zaorsky NG 2019: A population-based study of cardiovascular disease mortality risk in US cancer patients. Eur Heart J 40: 3889-3897
<https://doi.org/10.1093/eurheartj/ehz766>
28. JMV, Martinez ODM, Grancieri M, Toledo RCL, Binoti ML, Martins AMD, Carvalho CWP, Lisboa PC, Martino HSD 2021: Germinated millet flour (Pennisetum glaucum (L.) R. BR.) improves adipogenesis and glucose metabolism and maintains thyroid function in vivo. Food Funct 12: 6083-6090
<https://doi.org/10.1039/D0FO03388J>
29. SK, Chin KY, Suhaimi FH, Fairus A, Ima-Nirwana S 2016: Animal models of metabolic syndrome: a review. Nutr Metab 13: 1-12
<https://doi.org/10.1186/s12986-016-0123-9>
30. Y, Middleton FA, Faraone SV 2013: Genetic architecture of Wistar-Kyoto rat and spontaneously hypertensive rat substrains from different sources. Physiol Genomics 45: 528-538
<https://doi.org/10.1152/physiolgenomics.00002.2013>
31. Q, Li L, Zhu Y, Hou D, Li Y, Guo X, Wang Y, Olatunji OJ, Wan P, Gong K. Kukoamine B 2020: Ameliorate insulin resistance, oxidative stress, inflammation and other metabolic abnormalities in high-fat/high-fructose-fed rats. Diabetes Metab Syndr Obes 13: 1843-1853
<https://doi.org/10.2147/DMSO.S247844>
32. JM, Wang HM, Lv YZ, Wang ZZ, Xiao W 2018: Anti-atherosclerotic effect of Longxuetongluo Capsule in high cholesterol diet-induced atherosclerosis model rats. Biomed Pharmacother 97: 793-801
<https://doi.org/10.1016/j.biopha.2017.08.141>
33. MDA, Mani A 2016: Metabolic syndrome. Genetic insights into disease pathogenesis. Curr Opin Lipidol 2: 162-171
<https://doi.org/10.1097/MOL.0000000000000276>

