Acta Vet. Brno 2023, 92: 435-441
https://doi.org/10.2754/avb202392040435
Bacteria trapping effectivity on nanofibre membrane in liquids is exponentially dependent on the surface density
References
1. 2022: A review on fabrication methods of nanofibers and a special focus on application of cellulose nanofibers. Carbohyd Polym 4: 100262
G, Jaiganesh R
2. 2022: Myrtle-functionalized nanofibers modulate vaginal cell population behavior while counteracting microbial proliferation. Plants-Basel 11: 1577
< E, Diaz N, Kralovič M, Divin R, Sarais G, Fadda A, Satta R, Montesu MA, Medici S, Brunetti A, Barcessat ARP, Jarošíková T, Rulc J, Amler E, Margarita V, Rappelli P, Maioli M https://doi.org/10.3390/plants11121577>
3. 2022: Low concentrated fractionalized nanofibers as suitable fillers for optimization of structural-functional parameters of dead space gel implants after rectal extirpation. Gels-Basel 8: 158
< M, Pashchenko A, Stuchlíková S, Kalábová H, Divín R, Novotný P, Kestlerová A, Jelen K, Kubový P, Firment P, Fedačko J, Jarošíková T, Rulc J, Rosina J, Nečas A, Amler E, Hoch J https://doi.org/10.3390/gels8030158>
4. 2020: Effects of fiber density and strain rate on the mechanical properties of electrospun polycaprolactone nanofiber mats. Front Chem 8: 610
< AA, Sun K, Hu X, Beachley VZ https://doi.org/10.3389/fchem.2020.00610>
5. 2022: Role of nano-mirnas in diagnostics and therapeutics. Int J Mol Sci 23: 6836
< D, Bellu E, Congiargiu A, Pashchenko A, Amler E, Necas A, Carru C, Medici S, Maioli M https://doi.org/10.3390/ijms23126836>
6. 2021: Bio-based electrospun nanofiber as building block for a novel eco-friendly air filtration membrane: A review. Sep Purif Technol 277: 119623
< Y, Lu T, Cui J, Samal S K, Xiong R, Huang C https://doi.org/10.1016/j.seppur.2021.119623>
7. 2022: Liquid resorbable nanofibrous surgical mesh: a proof of a concept. Hernia 26: 557-565
< B, Woleský J, Divín R, Otáhal M, Vocetková K, Sovková V, Blahnová VH, Koblížek M, Kubový P, Nečasová A, Staffa A, de Beaux AC, Lorenzová J, Amler E https://doi.org/10.1007/s10029-022-02582-1>
8. 2011: Creation of fiber optic based biosensor for air toxicity monitoring. Sensor Actuat B-Chem 155: 859-867
< E, Pavluchov V, Burstin M, Marks RS https://doi.org/10.1016/j.snb.2011.01.062>
9. 2022: Fast fluorescent screening assay and dual electrochemical sensing of bacterial infection agent (Streptococcus agalactiae) based on a fluorescent-immune nanofibers. Sensor Actuat B-Chem 325: 130968
< R, Mirahmadi-zare SZ, Allafchian A, Behmanesh M https://doi.org/10.1016/j.snb.2021.130968>
10. 2018: A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem 11: 1165-1188
< A, Haider S, Kang IK https://doi.org/10.1016/j.arabjc.2015.11.015>
11. 2020: Recent developments in nanofiber-based sensors for disease detection, immunosensing, and monitoring. Sensor Actuator 2: 100005
J, McLoughlin L, Bridgers B, Wujcik EK
12. Jafari MJ, Pirposhteh EA, Farhangian M, Ardakani SK, Tavakol E, Dehghan SF, Khalilinejad A 2022: Optimizing the electrospinning parameters in polyvinyl chloride nanofiber fabrication using CCD. Research Journal of Textile and Apparel vol ahead-of-print
13. 2017: Nanofiber technology: current status and emerging developments. Prog Polym Sci 70: 1-17
< Lim ChT https://doi.org/10.1016/j.progpolymsci.2017.03.002>
14. 2021: Trace-level monitoring of anti-cancer drug residues in wastewater and biological samples by thin-film solid-phase micro-extraction using electrospun polyfam/Co-MOF-74 composite nanofibers prior to liquid chromatography analysis. J Chromatogr A 1655: 462484
< P, Jalilian N, Ebrahimzadeh H, Amini S https://doi.org/10.1016/j.chroma.2021.462484>
15. 2018: Surface-modified polymer nanofiber membrane for high-efficiency microdust capturing. Chem Eng J 339: 204-213
< HJ, Park SJ, Park CS, Le T-H, Lee SH, Ha TH, Kim H-I, Kim J, Lee CS, Yoon H, Kwon OS https://doi.org/10.1016/j.cej.2018.01.121>
16. 2022: Nanofiber Fractionalization Stimulates Healing of Large Intestine Anastomoses in Rabbits. Int J Nanomed 17: 6335-6345
< M, Vjaclovsky M, Tonar Z, Grajciarova M, Lorenzova J, Otahal M, Necas A, Hoch J, Amler E https://doi.org/10.2147/IJN.S364888>
17. 2015: Morphology and pore size distribution of electrospun and centrifugal forcespun nylon 6 nanofiber membranes. Text Res J 86: 1294-1306
< M, Yuan W https://doi.org/10.1177/0040517515609258>
18. 2020: The potential of wastewater-based epidemiology as surveillance and early warning of infectious disease outbreaks. Current Opinion in Environmental Science and Health 17: 1-7
< K, Zhang K, Du W, Ali W, Feng X, Zhang H https://doi.org/10.1016/j.coesh.2020.04.006>
19. 2021: Biosensors for wastewater-based epidemiology for monitoring public health. Water Res 191: 116787
< K, Zhan H, Pan Y, Yang Z https://doi.org/10.1016/j.watres.2020.116787>
20. Mandelstam J, McQuillen K, Dawes I (Eds) 1982: Biochemistry of Bacterial Growth. 3rd edn. Blackwell Scientific Publications, Oxford. 449 p.
21. 2019: Wastewater-based epidemiology as a novel assessment approach for population-level metal exposure. Sci Total Environ 689: 1125-1132
< Ch, Mirzoyan N https://doi.org/10.1016/j.scitotenv.2019.06.419>
22. 2016: The comparative study of aerosol filtration by electrospun polyamide, polyvinyl acetate, polyacrylonitrile and cellulose acetate nanofiber media. J Aerosol Sci 92: 27-37
< J, Kliucininkas L, Prasauskas T, Buivydiene D, Martuzevicius D https://doi.org/10.1016/j.jaerosci.2015.10.006>
23. 2022: Smart nanofibres for specific and ultrasensitive nanobiosensors and drug delivery systems. Acta Vet Brno 91: 163-170
< A, Stuchlíková S, Varvařovská L, Firment P, Staňková L, Nečasová A, Amler E https://doi.org/10.2754/avb202291020163>
24. 2020: Personal protective equipment for healthcare workers during the COVID-19 pandemic. Infect Chemother 52: 165-182
< SH https://doi.org/10.3947/ic.2020.52.2.165>
25. 2006: Filtration properties of electrospinning nanofibers. J Appl Polym Sci 102: 1285-1290
< X-H, Wang S-Y https://doi.org/10.1002/app.24361>
26. 2022: Recent advances in airborne pathogen detection using optical and electrochemical biosensors. Anal Chim Acta 1234: 340297
S, Yoon Lee N
27. 2018: Design and fabrication of an electrochemical aptasensor using Au nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite for rapid and sensitive detection of Staphylococcus aureus. Bioelectrochemistry 2018: 70-76
< S, Shahrokhian S https://doi.org/10.1016/j.bioelechem.2018.04.018>
28. 2021: A review on electrospun nanofibers based advanced applications: From health care to energy devices. Polymers-Basel 13: 3746
< VS, Tian Y, Zhang C, Ye Z, Roy K, Chinnappan A, Ramakrishna S, Liu W, Ghosh R https://doi.org/10.3390/polym13213746>
29. Sahto MO 2021: Electrospun Nanofibers for Highly Efficient Air Filter Applications. Advanced Nanofiber Laboratory, Ltd.Şti, İnovenso Teknoloji
30. 2020: Sulfur-doped titanium carbide MXenes for room-temperature gas sensing. ACS Sensors 5: 2915-2924
< SN, Gomez AMU, Mishra A, Chen WY, Dongare AM, Stanciu LA https://doi.org/10.1021/acssensors.0c01287>
31. 2022: Electrospun nanofiber-based membranes for water treatment. Polymers-Basel 14: 2004
< Y, Cai Z, Sun X, Chong C, Yan X, Li M, Xu J https://doi.org/10.3390/polym14102004>
32. 2022: Study of the Nanofibers fabrication conditions from the mixture of poly(vinyl alcohol) and chitosan by electrospinning method. Polymers-Basel 14: 811
< THN, Morozkina SN, Uspenskaya MV https://doi.org/10.3390/polym14040811>
33. 2022: Electrospun nanofiber membranes for air filtration: a review. Nanomaterials-Basel 12: 1077
< Y, Liu Y, Zhang M, Feng Z, Yu DG, Wang K https://doi.org/10.3390/nano12071077>