Acta Vet. Brno 2023, 92: 435-441

https://doi.org/10.2754/avb202392040435

Bacteria trapping effectivity on nanofibre membrane in liquids is exponentially dependent on the surface density

Leontýna Varvařovská1, Bruno Sopko2,3, Radek Divín3,4, Aleksei Pashschenko3,4,5, Jan Fedačko6, Jan Sabo7, Alois Nečas8, Evžen Amler3, Taťána Jarošíková1

1Czech Technical University in Prague, Faculty of Biomedical Engineering, Department of Natural Sciences, Kladno, Czech Republic
2Charles University, 2nd Faculty of Medicine, Department of Medical Chemistry and Clinical Biochemistry, Praha, Czech Republic
3Czech Technical University in Prague, University Centre for Energy Efficient Buildings, Bustehrad, Czech Republic
4Charles University, Faculty of Medicine, Department of Medical Biophysics, Praha, Czech Republic
5University of Sassari, Department of Biomedical Sciences, Sassari, Italy
6Pavol Jozef Šafárik University in Košice, University Research Park Medipark, Centre of Clinical and Preclinical Research, Košice, Slovakia
7Pavol Jozef Šafárik University in Košice, Institute of Medical Biophysics, Košice, Slovakia
8University of Veterinary Sciences Brno, Faculty of Veterinary Medicine, Brno, Czech Republic

Received June 13, 2023
Accepted October 25, 2023

References

1. Anusiya G, Jaiganesh R 2022: A review on fabrication methods of nanofibers and a special focus on application of cellulose nanofibers. Carbohyd Polym 4: 100262
2. Bellu E, Diaz N, Kralovič M, Divin R, Sarais G, Fadda A, Satta R, Montesu MA, Medici S, Brunetti A, Barcessat ARP, Jarošíková T, Rulc J, Amler E, Margarita V, Rappelli P, Maioli M 2022: Myrtle-functionalized nanofibers modulate vaginal cell population behavior while counteracting microbial proliferation. Plants-Basel 11: 1577 <https://doi.org/10.3390/plants11121577>
3. Bocková, M, Pashchenko A, Stuchlíková S, Kalábová H, Divín R, Novotný P, Kestlerová A, Jelen K, Kubový P, Firment P, Fedačko J, Jarošíková T, Rulc J, Rosina J, Nečas A, Amler E, Hoch J 2022: Low concentrated fractionalized nanofibers as suitable fillers for optimization of structural-functional parameters of dead space gel implants after rectal extirpation. Gels-Basel 8: 158 <https://doi.org/10.3390/gels8030158>
4. Conte AA, Sun K, Hu X, Beachley VZ 2020: Effects of fiber density and strain rate on the mechanical properties of electrospun polycaprolactone nanofiber mats. Front Chem 8: 610 <https://doi.org/10.3389/fchem.2020.00610>
5. Coradduzza D, Bellu E, Congiargiu A, Pashchenko A, Amler E, Necas A, Carru C, Medici S, Maioli M 2022: Role of nano-mirnas in diagnostics and therapeutics. Int J Mol Sci 23: 6836 <https://doi.org/10.3390/ijms23126836>
6. Deng Y, Lu T, Cui J, Samal S K, Xiong R, Huang C 2021: Bio-based electrospun nanofiber as building block for a novel eco-friendly air filtration membrane: A review. Sep Purif Technol 277: 119623 <https://doi.org/10.1016/j.seppur.2021.119623>
7. East B, Woleský J, Divín R, Otáhal M, Vocetková K, Sovková V, Blahnová VH, Koblížek M, Kubový P, Nečasová A, Staffa A, de Beaux AC, Lorenzová J, Amler E 2022: Liquid resorbable nanofibrous surgical mesh: a proof of a concept. Hernia 26: 557-565 <https://doi.org/10.1007/s10029-022-02582-1>
8. Eltzov E, Pavluchov V, Burstin M, Marks RS 2011: Creation of fiber optic based biosensor for air toxicity monitoring. Sensor Actuat B-Chem 155: 859-867 <https://doi.org/10.1016/j.snb.2011.01.062>
9. Ghasemi R, Mirahmadi-zare SZ, Allafchian A, Behmanesh M 2022: Fast fluorescent screening assay and dual electrochemical sensing of bacterial infection agent (Streptococcus agalactiae) based on a fluorescent-immune nanofibers. Sensor Actuat B-Chem 325: 130968 <https://doi.org/10.1016/j.snb.2021.130968>
10. Haider A, Haider S, Kang IK 2018: A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem 11: 1165-1188 <https://doi.org/10.1016/j.arabjc.2015.11.015>
11. Horne J, McLoughlin L, Bridgers B, Wujcik EK 2020: Recent developments in nanofiber-based sensors for disease detection, immunosensing, and monitoring. Sensor Actuator 2: 100005
12. Jafari MJ, Pirposhteh EA, Farhangian M, Ardakani SK, Tavakol E, Dehghan SF, Khalilinejad A 2022: Optimizing the electrospinning parameters in polyvinyl chloride nanofiber fabrication using CCD. Research Journal of Textile and Apparel vol ahead-of-print
13. Kenry, Lim ChT 2017: Nanofiber technology: current status and emerging developments. Prog Polym Sci 70: 1-17 <https://doi.org/10.1016/j.progpolymsci.2017.03.002>
14. Khodayari P, Jalilian N, Ebrahimzadeh H, Amini S 2021: Trace-level monitoring of anti-cancer drug residues in wastewater and biological samples by thin-film solid-phase micro-extraction using electrospun polyfam/Co-MOF-74 composite nanofibers prior to liquid chromatography analysis. J Chromatogr A 1655: 462484 <https://doi.org/10.1016/j.chroma.2021.462484>
15. Kim HJ, Park SJ, Park CS, Le T-H, Lee SH, Ha TH, Kim H-I, Kim J, Lee CS, Yoon H, Kwon OS 2018: Surface-modified polymer nanofiber membrane for high-efficiency microdust capturing. Chem Eng J 339: 204-213 <https://doi.org/10.1016/j.cej.2018.01.121>
16. Kralovic M, Vjaclovsky M, Tonar Z, Grajciarova M, Lorenzova J, Otahal M, Necas A, Hoch J, Amler E 2022: Nanofiber Fractionalization Stimulates Healing of Large Intestine Anastomoses in Rabbits. Int J Nanomed 17: 6335-6345 <https://doi.org/10.2147/IJN.S364888>
17. Krifa M, Yuan W 2015: Morphology and pore size distribution of electrospun and centrifugal forcespun nylon 6 nanofiber membranes. Text Res J 86: 1294-1306 <https://doi.org/10.1177/0040517515609258>
18. Mao K, Zhang K, Du W, Ali W, Feng X, Zhang H 2020: The potential of wastewater-based epidemiology as surveillance and early warning of infectious disease outbreaks. Current Opinion in Environmental Science and Health 17: 1-7 <https://doi.org/10.1016/j.coesh.2020.04.006>
19. Mao K, Zhan H, Pan Y, Yang Z 2021: Biosensors for wastewater-based epidemiology for monitoring public health. Water Res 191: 116787 <https://doi.org/10.1016/j.watres.2020.116787>
20. Mandelstam J, McQuillen K, Dawes I (Eds) 1982: Biochemistry of Bacterial Growth. 3rd edn. Blackwell Scientific Publications, Oxford. 449 p.
21. Markosian Ch, Mirzoyan N 2019: Wastewater-based epidemiology as a novel assessment approach for population-level metal exposure. Sci Total Environ 689: 1125-1132 <https://doi.org/10.1016/j.scitotenv.2019.06.419>
22. Matulevicius J, Kliucininkas L, Prasauskas T, Buivydiene D, Martuzevicius D 2016: The comparative study of aerosol filtration by electrospun polyamide, polyvinyl acetate, polyacrylonitrile and cellulose acetate nanofiber media. J Aerosol Sci 92: 27-37 <https://doi.org/10.1016/j.jaerosci.2015.10.006>
23. Pashchenko A, Stuchlíková S, Varvařovská L, Firment P, Staňková L, Nečasová A, Amler E 2022: Smart nanofibres for specific and ultrasensitive nanobiosensors and drug delivery systems. Acta Vet Brno 91: 163-170 <https://doi.org/10.2754/avb202291020163>
24. Park SH 2020: Personal protective equipment for healthcare workers during the COVID-19 pandemic. Infect Chemother 52: 165-182 <https://doi.org/10.3947/ic.2020.52.2.165>
25. Qin X-H, Wang S-Y 2006: Filtration properties of electrospinning nanofibers. J Appl Polym Sci 102: 1285-1290 <https://doi.org/10.1002/app.24361>
26. Rajamanickam S, Yoon Lee N 2022: Recent advances in airborne pathogen detection using optical and electrochemical biosensors. Anal Chim Acta 1234: 340297
27. Ranjbar S, Shahrokhian S 2018: Design and fabrication of an electrochemical aptasensor using Au nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite for rapid and sensitive detection of Staphylococcus aureus. Bioelectrochemistry 2018: 70-76 <https://doi.org/10.1016/j.bioelechem.2018.04.018>
28. Reddy VS, Tian Y, Zhang C, Ye Z, Roy K, Chinnappan A, Ramakrishna S, Liu W, Ghosh R 2021: A review on electrospun nanofibers based advanced applications: From health care to energy devices. Polymers-Basel 13: 3746 <https://doi.org/10.3390/polym13213746>
29. Sahto MO 2021: Electrospun Nanofibers for Highly Efficient Air Filter Applications. Advanced Nanofiber Laboratory, Ltd.Şti, İnovenso Teknoloji
30. Shuvo SN, Gomez AMU, Mishra A, Chen WY, Dongare AM, Stanciu LA 2020: Sulfur-doped titanium carbide MXenes for room-temperature gas sensing. ACS Sensors 5: 2915-2924 <https://doi.org/10.1021/acssensors.0c01287>
31. Tang Y, Cai Z, Sun X, Chong C, Yan X, Li M, Xu J 2022: Electrospun nanofiber-based membranes for water treatment. Polymers-Basel 14: 2004 <https://doi.org/10.3390/polym14102004>
32. Vu THN, Morozkina SN, Uspenskaya MV 2022: Study of the Nanofibers fabrication conditions from the mixture of poly(vinyl alcohol) and chitosan by electrospinning method. Polymers-Basel 14: 811 <https://doi.org/10.3390/polym14040811>
33. Zhou Y, Liu Y, Zhang M, Feng Z, Yu DG, Wang K 2022: Electrospun nanofiber membranes for air filtration: a review. Nanomaterials-Basel 12: 1077 <https://doi.org/10.3390/nano12071077>
front cover
  • ISSN 0001-7213 (printed)
  • ISSN 1801-7576 (electronic)

Current issue

Archive