Acta Vet. Brno 2024, 93: 93-103
https://doi.org/10.2754/avb202493010093
Nontyping virulence factors of Clostridium perfringens
References
1. MA, Radomski N, Delannoy S, Djellal S, Le Négrate M, Hadjab K, Fach P, Hennekinne JA, Mistou MY, Firmesse O 2019: Large-Scale genomic analyses and toxinotyping of Clostridium perfringens implicated in foodborne outbreaks in France. Front Microbiol 10: 777
<https://doi.org/10.3389/fmicb.2019.00777>
2. MS, Matsuda A, Urushibara N, Kawaguchiya M, Ohashi N, Matsuda N, Nakamura M, Ito M, Habadera S, Matsumoto A, Hirose M, Kobayashi N 2021: Clonal diversity of Clostridium perfringens human clinical isolates with various toxin gene profiles based on multilocus sequence typing and alpha-toxin (PLC) typing. Anaerobe 72: 102473
<https://doi.org/10.1016/j.anaerobe.2021.102473>
3. R, Piselli C, Hoxha C, Koy C, Glocker MO, Popoff MR 2022: Clostridium perfringens Beta2 toxin forms highly cation-selective channels in lipid bilayers. Eur Biophys J 51: 15-27
<https://doi.org/10.1007/s00249-021-01577-7>
4. Bryant A, Aldape MJ, Stevens DL 2015: Clostridium Perfringens and Other Life-Threatening Clostridial Soft Tissue Infections. In: Tang Y-W, Sussman M, Jiu D, Poxton I, Schwartzman D (eds): Molecular Medical Microbiology, second edition, Academic Press, London, UK, pp 899-907
5. A, Guerrero-Araya E, Castańeda S, Vega L, Cardenas-Alvarez MX, Rodríguez C, Paredes-Sabja D, Ramírez JD, Muńoz M 2022: Intra-species diversity of Clostridium perfringens: A diverse genetic repertoire reveals its pathogenic potential. Front Microbiol 13: 952081
<https://doi.org/10.3389/fmicb.2022.952081>
6. A, Awad MM, Hiscox TJ, Cheung JK, Carter GP, Choo JM, Lyras D, Rood JI 2011: The cysteine protease α-clostripain is not essential for the pathogenesis of Clostridium perfringens-mediated myonecrosis. PloS ONE 6: e22762
<https://doi.org/10.1371/journal.pone.0022762>
7. J, McClane BA 2015: Characterization of Clostridium perfringens TpeL toxin gene carriage, production, cytotoxic contributions, and trypsin sensitivity. Infect Immun 83: 2369-2381
<https://doi.org/10.1128/IAI.03136-14>
8. Y, Peyman N, Gholamreza H, Gholamali K, Mohammad R, Jamshid R 2018: Major and minor toxins of Clostridium perfringens isolated from healthy and diseased sheep. Small Rumin Res 168: 1-5
<https://doi.org/10.1016/j.smallrumres.2018.09.008>
9. SM, Summanen PH, Downes J, Corbett K, Komoriya T 2017: Detection of Clostridium perfringens toxin genes in the gut microbiota of autistic children. Anaerobe 45: 133-137
<https://doi.org/10.1016/j.anaerobe.2017.02.008>
10. JC, Theoret JR, Wisniewski JA, Uzal FA, Rood JI, McClane BA 2015: Clostridium perfringens type A–E toxin plasmids. Res Microbiol 166: 264-279
<https://doi.org/10.1016/j.resmic.2014.09.004>
11. X, Yang Q, Huang X, Yan Z, Zhang S, Luo R, Wang P, Wang W, Xie K, Jiang T, Gun S 2020: Effects of Clostridium perfringens beta2 toxin on apoptosis, inflammation, and barrier function of intestinal porcine epithelial cells. Microb Pathog 147: 104379
<https://doi.org/10.1016/j.micpath.2020.104379>
12. E, Valgaeren BR, Pardon B, Haesebrouck F, Ducatelle R, Deprez PR, Van Immerseel F 2017: Rethinking the role of alpha toxin in Clostridium perfringens-associated enteric diseases: a review on bovine necro-haemorrhagic enteritis. Vet Res 48: 9-26
<https://doi.org/10.1186/s13567-017-0413-x>
13. EL, Adams V, Marcelino VR, Gould J, Rutten EL, Powell DR, Young RB, D’Adamo GL, Hemphill J, Solari SM, Revitt-Mills SA, Munn S, Jirapanjawat T, Greening C, Boer JC, Flanagan KL, Kaldhusdal M, Plebanski M, Gibney KB, Moore RJ, Rood JI, Forster SC 2023: Extensive genome analysis identifies novel plasmid families in Clostridium perfringens. Microb Genom 9: 000995
14. JM, Li J, McClane BA 2012: Identification of a lambda toxin-negative Clostridium perfringens strain that processes and activates epsilon prototoxin intracellularly. Anaerobe 18: 546-552
<https://doi.org/10.1016/j.anaerobe.2012.09.001>
15. WL, Walton SL 2000: Hyaluronidases of Gram-positive bacteria. FEMS Microbiol Lett 183: 201-207
<https://doi.org/10.1111/j.1574-6968.2000.tb08958.x>
16. F, Matsushita O, Katayama S, Jin S, Matsushita C, Minami J, Okabe A 1996: Purification, characterization, and primary structure of Clostridium perfringens lambda-toxin, a thermolysin-like metalloprotease. Infect Immun 64: 230-237
<https://doi.org/10.1128/iai.64.1.230-237.1996>
17. K, Yonogi S, Munetomo R, Oki H, Yoshida T, Kumeda Y, Matsuda S, Kodama T, Ohkubo T, Iida T, Nakamura S 2016: Crystal structure of the ADP-ribosylating component of BEC, the binary enterotoxin of Clostridium perfringens. Biochem Biophys Res Commun 480: 261-267
<https://doi.org/10.1016/j.bbrc.2016.10.042>
18. R, Hall LJ 2018: An update on the human and animal enteric pathogen Clostridium perfringens. Emerg Microbes Infect 7: 1-15
<https://doi.org/10.1038/s41426-018-0144-8>
19. R, Sim K, Shaw A, Cornwell E, Pickard D, Kroll JS, Hall LJ 2019: Genomic analysis of Clostridium perfringens BEC/CPILE-positive, toxinotype D and E strains isolated from healthy children. Toxins 11:543-557
<https://doi.org/10.3390/toxins11090543>
20. M, Kacprzyk-Stokowiec A, Kwiatkowska K, Traczyk G, Sobota A, Dadlez M 2017: R468A mutation in perfringolysin O destabilizes toxin structure and induces membrane fusion. Biochim Biophys Acta Biomembr 1859: 1075-1088
<https://doi.org/10.1016/j.bbamem.2017.03.001>
21. JA, Johanesen PA, Lyras D, Moore RJ 2016: Genomic diversity of necrotic enteritis-associated strains of Clostridium perfringens: a review. Avian Pathol 45: 302-307
<https://doi.org/10.1080/03079457.2016.1153799>
22. JA, Johanesen PA, Lyras D, Moore RJ 2019: In silico identification of novel toxin homologs and associated mobile genetic elements in Clostridium perfringens. Pathogens 8: 16
<https://doi.org/10.3390/pathogens8010016>
23. J, Uzal FA, McClane BA 2016: Clostridium perfringens Sialidases: potential contributors to intestinal pathogenesis and therapeutic targets. Toxins 8: 341-356
<https://doi.org/10.3390/toxins8110341>
24. S, Nariya H, Miyata S, Tanaka H, Minami J, Suzuki M, Taniguchi Y, Okabe A 2010: Purification and characterization of a clostripain-like protease from a recombinant Clostridium perfringens culture. Microbiol 156: 561-569
<https://doi.org/10.1099/mic.0.031609-0>
25. A, Aung MS, Urushibara N, Kawaguchiya M, Sumi A, Nakamura M, Horino Y, Ito M, Habadera S, Kobayashi N 2019: Prevalence and genetic diversity of toxin genes in clinical isolates of Clostridium perfringens: Coexistence of alpha-toxin variant and binary enterotoxin genes (bec/cpile). Toxins 11: 326-341
<https://doi.org/10.3390/toxins11060326>
26. I, Parreir, VR, Nowell VJ, Nicholson VM, Oliphant K, Prescott JF 2015: A novel pore-forming toxin in type A Clostridium perfringens is associated with both fatal canine hemorrhagic gastroenteritis and fatal foal necrotizing enterocolitis. PLoS One 10: e0122684
<https://doi.org/10.1371/journal.pone.0122684>
27. I, Kropinski AM, Weese SJ, Parreira VR, Whitehead AE, Boerlin P, prescott JF 2016: Plasmid characterization and chromosome analysis of two netF+ Clostridium perfringens isolates associated with foal and canine necrotizing enteritis. PLoS ONE 11: e0148344
<https://doi.org/10.1371/journal.pone.0148344>
28. J, Katayama S, Matsushita O, Matsushita C, Okabe A 1997: Lambda-toxin of Clostridium perfringens activates the precursor of epsilon-toxin by releasing its N-and C-terminal peptides. Microbiol Immunol 41: 527-535
<https://doi.org/10.1111/j.1348-0421.1997.tb01888.x>
29. Nagahama M, Oda M, Tsuge H, Kobayashi K 2015: Enteric Toxins of Clostridium perfringens: Beta Toxin, TpeL, Epsilon Toxin and Iota Toxin. In: Tang Y-W, Sussman M, Jiu D, Poxton I, Schwartzman D (Eds): Molecular Medical Microbiology, second edition, Academic Press, London, UK, pp. 997-1013
30. M, Rafii F 2019: The prevalence of plasmid-coded cpe enterotoxin, b2 toxin, tpeL toxin, and tetracycline resistance in Clostridium perfringens strains isolated from different sources. Anaerobe 56: 124-129
<https://doi.org/10.1016/j.anaerobe.2019.02.007>
31. SA, Rood JI, Adams V 2015: Clostridium perfringens extracellular toxins and enzymes: 20 and counting. Microbiol Aust 36: 114-117
<https://doi.org/10.1071/MA15039>
32. SA, Vidor CJ, Watts TD, Lyras D, Rood JI, Adams V 2019: Virulence plasmids of the pathogenic Clostridia. Microbiol Spectr 7: 10
<https://doi.org/10.1128/microbiolspec.GPP3-0034-2018>
33. JI, Adams V, Lacey J, Lyras D, McClane B, Melville S, Van Immerseel F 2018: Expansion of the Clostridium perfringens toxin-based typing scheme. Anaerobe 53: 5-10
<https://doi.org/10.1016/j.anaerobe.2018.04.011>
34. S, Takehara M, Kobayashi K, Nagahama M 2019: Clostridium perfringens delta-toxin damages the mouse small intestine. Toxins 11: 232
<https://doi.org/10.3390/toxins11040232>
35. KM, Callan RJ, Van Metre, DC 2018: Clostridial abomasitis and enteritis in ruminants. Vet Clin Food Anim 34: 155-184
<https://doi.org/10.1016/j.cvfa.2017.10.010>
36. N, Suchodolski JS, Leutenegger CM, Mehdizadeh Gohari I, Prescott JF, Proksch A-L, Mueller RS, Busch K, Unterer S 2019: Prevalence of Clostridium perfringens netE and netF toxin genes in the feces of dogs with acute hemorrhagic diarrhea syndrome. J Vet Intern Med 33: 100-105
<https://doi.org/10.1111/jvim.15361>
37. A, Ohtani K, Komine-Aizawa S, Matsumoto A, Kamiya S, Hayakawa S 2021: Pathogenic characterization of Clostridium perfringens strains isolated from patients with massive intravascular hemolysis. Front Microbiol 12: 713509
<https://doi.org/10.3389/fmicb.2021.713509>
38. L, Callens C, Dargatz M, Flügel M, Hark S, Thiemann F, Pelzer S, Ducatelle R, Van Immerseel F, Goossens E 2022: NanI sialidase contributes to toxin expression and host cell binding of Clostridium perfringens type G strain CP56 in vitro. Vet Microbiol 266: 109371
<https://doi.org/10.1016/j.vetmic.2022.109371>
39. S, Goossens E, Valgaeren B, Pardon B, Timbermont L, Haesebrouck F, Ducatelle R, Deprez P, Wade KR, Tweten R, Van Immerseel F 2015: Perfringolysin O: The underrated Clostridium perfringens toxin? Toxins 7: 1702-1721
<https://doi.org/10.3390/toxins7051702>
40. S, Kanki M, Ohnishi T, Shiono M, Iida T, Kumeda Y 2016: Development and application of a multiplex PCR assay for detection of the Clostridium perfringens enterotoxin-encoding genes cpe and becAB. J Microbiol Methods 127: 172-175
<https://doi.org/10.1016/j.mimet.2016.06.007>

