Acta Vet. Brno 2024, 93: 93-103

https://doi.org/10.2754/avb202493010093

Nontyping virulence factors of Clostridium perfringens

Irena Svobodová, Radka Hulánková

University of Veterinary Sciences Brno, Faculty od Veterinary Hygiene and Ecology, Department of Animal Origin Food and Gastronomic Sciences, Brno, Czech Republic

Received May 31, 2023
Accepted February 19, 2024

References

1. Abdelrahim MA, Radomski N, Delannoy S, Djellal S, Le Négrate M, Hadjab K, Fach P, Hennekinne JA, Mistou MY, Firmesse O 2019: Large-Scale genomic analyses and toxinotyping of Clostridium perfringens implicated in foodborne outbreaks in France. Front Microbiol 10: 777 <https://doi.org/10.3389/fmicb.2019.00777>
2. Aung MS, Matsuda A, Urushibara N, Kawaguchiya M, Ohashi N, Matsuda N, Nakamura M, Ito M, Habadera S, Matsumoto A, Hirose M, Kobayashi N 2021: Clonal diversity of Clostridium perfringens human clinical isolates with various toxin gene profiles based on multilocus sequence typing and alpha-toxin (PLC) typing. Anaerobe 72: 102473 <https://doi.org/10.1016/j.anaerobe.2021.102473>
3. Benz R, Piselli C, Hoxha C, Koy C, Glocker MO, Popoff MR 2022: Clostridium perfringens Beta2 toxin forms highly cation-selective channels in lipid bilayers. Eur Biophys J 51: 15-27 <https://doi.org/10.1007/s00249-021-01577-7>
4. Bryant A, Aldape MJ, Stevens DL 2015: Clostridium Perfringens and Other Life-Threatening Clostridial Soft Tissue Infections. In: Tang Y-W, Sussman M, Jiu D, Poxton I, Schwartzman D (eds): Molecular Medical Microbiology, second edition, Academic Press, London, UK, pp 899-907
5. Camargo A, Guerrero-Araya E, Castańeda S, Vega L, Cardenas-Alvarez MX, Rodríguez C, Paredes-Sabja D, Ramírez JD, Muńoz M 2022: Intra-species diversity of Clostridium perfringens: A diverse genetic repertoire reveals its pathogenic potential. Front Microbiol 13: 952081 <https://doi.org/10.3389/fmicb.2022.952081>
6. Chakravorty A, Awad MM, Hiscox TJ, Cheung JK, Carter GP, Choo JM, Lyras D, Rood JI 2011: The cysteine protease α-clostripain is not essential for the pathogenesis of Clostridium perfringens-mediated myonecrosis. PloS ONE 6: e22762 <https://doi.org/10.1371/journal.pone.0022762>
7. Chen J, McClane BA 2015: Characterization of Clostridium perfringens TpeL toxin gene carriage, production, cytotoxic contributions, and trypsin sensitivity. Infect Immun 83: 2369-2381 <https://doi.org/10.1128/IAI.03136-14>
8. Fahimeh Y, Peyman N, Gholamreza H, Gholamali K, Mohammad R, Jamshid R 2018: Major and minor toxins of Clostridium perfringens isolated from healthy and diseased sheep. Small Rumin Res 168: 1-5 <https://doi.org/10.1016/j.smallrumres.2018.09.008>
9. Finegold SM, Summanen PH, Downes J, Corbett K, Komoriya T 2017: Detection of Clostridium perfringens toxin genes in the gut microbiota of autistic children. Anaerobe 45: 133-137 <https://doi.org/10.1016/j.anaerobe.2017.02.008>
10. Freedman JC, Theoret JR, Wisniewski JA, Uzal FA, Rood JI, McClane BA 2015: Clostridium perfringens type A–E toxin plasmids. Res Microbiol 166: 264-279 <https://doi.org/10.1016/j.resmic.2014.09.004>
11. Gao X, Yang Q, Huang X, Yan Z, Zhang S, Luo R, Wang P, Wang W, Xie K, Jiang T, Gun S 2020: Effects of Clostridium perfringens beta2 toxin on apoptosis, inflammation, and barrier function of intestinal porcine epithelial cells. Microb Pathog 147: 104379 <https://doi.org/10.1016/j.micpath.2020.104379>
12. Goossens E, Valgaeren BR, Pardon B, Haesebrouck F, Ducatelle R, Deprez PR, Van Immerseel F 2017: Rethinking the role of alpha toxin in Clostridium perfringens-associated enteric diseases: a review on bovine necro-haemorrhagic enteritis. Vet Res 48: 9-26 <https://doi.org/10.1186/s13567-017-0413-x>
13. Gulliver EL, Adams V, Marcelino VR, Gould J, Rutten EL, Powell DR, Young RB, D’Adamo GL, Hemphill J, Solari SM, Revitt-Mills SA, Munn S, Jirapanjawat T, Greening C, Boer JC, Flanagan KL, Kaldhusdal M, Plebanski M, Gibney KB, Moore RJ, Rood JI, Forster SC 2023: Extensive genome analysis identifies novel plasmid families in Clostridium perfringens. Microb Genom 9: 000995
14. Harkness JM, Li J, McClane BA 2012: Identification of a lambda toxin-negative Clostridium perfringens strain that processes and activates epsilon prototoxin intracellularly. Anaerobe 18: 546-552 <https://doi.org/10.1016/j.anaerobe.2012.09.001>
15. Hynes WL, Walton SL 2000: Hyaluronidases of Gram-positive bacteria. FEMS Microbiol Lett 183: 201-207 <https://doi.org/10.1111/j.1574-6968.2000.tb08958.x>
16. Jin F, Matsushita O, Katayama S, Jin S, Matsushita C, Minami J, Okabe A 1996: Purification, characterization, and primary structure of Clostridium perfringens lambda-toxin, a thermolysin-like metalloprotease. Infect Immun 64: 230-237 <https://doi.org/10.1128/iai.64.1.230-237.1996>
17. Kawahara K, Yonogi S, Munetomo R, Oki H, Yoshida T, Kumeda Y, Matsuda S, Kodama T, Ohkubo T, Iida T, Nakamura S 2016: Crystal structure of the ADP-ribosylating component of BEC, the binary enterotoxin of Clostridium perfringens. Biochem Biophys Res Commun 480: 261-267 <https://doi.org/10.1016/j.bbrc.2016.10.042>
18. Kiu R, Hall LJ 2018: An update on the human and animal enteric pathogen Clostridium perfringens. Emerg Microbes Infect 7: 1-15 <https://doi.org/10.1038/s41426-018-0144-8>
19. Kiu R, Sim K, Shaw A, Cornwell E, Pickard D, Kroll JS, Hall LJ 2019: Genomic analysis of Clostridium perfringens BEC/CPILE-positive, toxinotype D and E strains isolated from healthy children. Toxins 11:543-557 <https://doi.org/10.3390/toxins11090543>
20. Kulma M, Kacprzyk-Stokowiec A, Kwiatkowska K, Traczyk G, Sobota A, Dadlez M 2017: R468A mutation in perfringolysin O destabilizes toxin structure and induces membrane fusion. Biochim Biophys Acta Biomembr 1859: 1075-1088 <https://doi.org/10.1016/j.bbamem.2017.03.001>
21. Lacey JA, Johanesen PA, Lyras D, Moore RJ 2016: Genomic diversity of necrotic enteritis-associated strains of Clostridium perfringens: a review. Avian Pathol 45: 302-307 <https://doi.org/10.1080/03079457.2016.1153799>
22. Lacey JA, Johanesen PA, Lyras D, Moore RJ 2019: In silico identification of novel toxin homologs and associated mobile genetic elements in Clostridium perfringens. Pathogens 8: 16 <https://doi.org/10.3390/pathogens8010016>
23. Li J, Uzal FA, McClane BA 2016: Clostridium perfringens Sialidases: potential contributors to intestinal pathogenesis and therapeutic targets. Toxins 8: 341-356 <https://doi.org/10.3390/toxins8110341>
24. Manabe S, Nariya H, Miyata S, Tanaka H, Minami J, Suzuki M, Taniguchi Y, Okabe A 2010: Purification and characterization of a clostripain-like protease from a recombinant Clostridium perfringens culture. Microbiol 156: 561-569 <https://doi.org/10.1099/mic.0.031609-0>
25. Matsuda A, Aung MS, Urushibara N, Kawaguchiya M, Sumi A, Nakamura M, Horino Y, Ito M, Habadera S, Kobayashi N 2019: Prevalence and genetic diversity of toxin genes in clinical isolates of Clostridium perfringens: Coexistence of alpha-toxin variant and binary enterotoxin genes (bec/cpile). Toxins 11: 326-341 <https://doi.org/10.3390/toxins11060326>
26. Mehdizadeh Gohari I, Parreir, VR, Nowell VJ, Nicholson VM, Oliphant K, Prescott JF 2015: A novel pore-forming toxin in type A Clostridium perfringens is associated with both fatal canine hemorrhagic gastroenteritis and fatal foal necrotizing enterocolitis. PLoS One 10: e0122684 <https://doi.org/10.1371/journal.pone.0122684>
27. Mehdizadeh Gohari I, Kropinski AM, Weese SJ, Parreira VR, Whitehead AE, Boerlin P, prescott JF 2016: Plasmid characterization and chromosome analysis of two netF+ Clostridium perfringens isolates associated with foal and canine necrotizing enteritis. PLoS ONE 11: e0148344 <https://doi.org/10.1371/journal.pone.0148344>
28. Minami J, Katayama S, Matsushita O, Matsushita C, Okabe A 1997: Lambda-toxin of Clostridium perfringens activates the precursor of epsilon-toxin by releasing its N-and C-terminal peptides. Microbiol Immunol 41: 527-535 <https://doi.org/10.1111/j.1348-0421.1997.tb01888.x>
29. Nagahama M, Oda M, Tsuge H, Kobayashi K 2015: Enteric Toxins of Clostridium perfringens: Beta Toxin, TpeL, Epsilon Toxin and Iota Toxin. In: Tang Y-W, Sussman M, Jiu D, Poxton I, Schwartzman D (Eds): Molecular Medical Microbiology, second edition, Academic Press, London, UK, pp. 997-1013
30. Park M, Rafii F 2019: The prevalence of plasmid-coded cpe enterotoxin, b2 toxin, tpeL toxin, and tetracycline resistance in Clostridium perfringens strains isolated from different sources. Anaerobe 56: 124-129 <https://doi.org/10.1016/j.anaerobe.2019.02.007>
31. Revitt-Mills SA, Rood JI, Adams V 2015: Clostridium perfringens extracellular toxins and enzymes: 20 and counting. Microbiol Aust 36: 114-117 <https://doi.org/10.1071/MA15039>
32. Revitt-Mills SA, Vidor CJ, Watts TD, Lyras D, Rood JI, Adams V 2019: Virulence plasmids of the pathogenic Clostridia. Microbiol Spectr 7: 10 <https://doi.org/10.1128/microbiolspec.GPP3-0034-2018>
33. Rood JI, Adams V, Lacey J, Lyras D, McClane B, Melville S, Van Immerseel F 2018: Expansion of the Clostridium perfringens toxin-based typing scheme. Anaerobe 53: 5-10 <https://doi.org/10.1016/j.anaerobe.2018.04.011>
34. Seike S, Takehara M, Kobayashi K, Nagahama M 2019: Clostridium perfringens delta-toxin damages the mouse small intestine. Toxins 11: 232 <https://doi.org/10.3390/toxins11040232>
35. Simpson KM, Callan RJ, Van Metre, DC 2018: Clostridial abomasitis and enteritis in ruminants. Vet Clin Food Anim 34: 155-184 <https://doi.org/10.1016/j.cvfa.2017.10.010>
36. Sindern N, Suchodolski JS, Leutenegger CM, Mehdizadeh Gohari I, Prescott JF, Proksch A-L, Mueller RS, Busch K, Unterer S 2019: Prevalence of Clostridium perfringens netE and netF toxin genes in the feces of dogs with acute hemorrhagic diarrhea syndrome. J Vet Intern Med 33: 100-105 <https://doi.org/10.1111/jvim.15361>
37. Suzaki A, Ohtani K, Komine-Aizawa S, Matsumoto A, Kamiya S, Hayakawa S 2021: Pathogenic characterization of Clostridium perfringens strains isolated from patients with massive intravascular hemolysis. Front Microbiol 12: 713509 <https://doi.org/10.3389/fmicb.2021.713509>
38. Van Damme L, Callens C, Dargatz M, Flügel M, Hark S, Thiemann F, Pelzer S, Ducatelle R, Van Immerseel F, Goossens E 2022: NanI sialidase contributes to toxin expression and host cell binding of Clostridium perfringens type G strain CP56 in vitro. Vet Microbiol 266: 109371 <https://doi.org/10.1016/j.vetmic.2022.109371>
39. Verherstraeten S, Goossens E, Valgaeren B, Pardon B, Timbermont L, Haesebrouck F, Ducatelle R, Deprez P, Wade KR, Tweten R, Van Immerseel F 2015: Perfringolysin O: The underrated Clostridium perfringens toxin? Toxins 7: 1702-1721 <https://doi.org/10.3390/toxins7051702>
40. Yonogi S, Kanki M, Ohnishi T, Shiono M, Iida T, Kumeda Y 2016: Development and application of a multiplex PCR assay for detection of the Clostridium perfringens enterotoxin-encoding genes cpe and becAB. J Microbiol Methods 127: 172-175 <https://doi.org/10.1016/j.mimet.2016.06.007>
front cover
  • ISSN 0001-7213 (printed)
  • ISSN 1801-7576 (electronic)

Current issue

Archive