Acta Vet. Brno 2024, 93: 105-114
https://doi.org/10.2754/avb202493010105
Pesticide residues in different honey types and public health risk assessment
References
1. 2023: Method validation for the determination of glyphosate and aminomethylphosphonic acid in water by LC-MS/MS. J Agron Technol Eng Manag 6: 902-909
< M, Bursić V, Vuković G https://doi.org/10.55817/QQKE6767>
2. 2012: Antibiotic, pesticide, and microbial contaminants of honey: human health hazards. Sci World 2012: 930849
N, Salom K, Al-Ghamdi A, Ansari MJ
3. 2023: Widespread use of toxic agrochemicals and pesticides for agricultural products storage in Africa and developing countries: Possible panacea for ecotoxicology and health implications. Heliyon 9: 1-17
< EG, Uchendu NO, Asomadu RO, Ezugwu AL, Okeke ES, Ezeorba TPC https://doi.org/10.1016/j.heliyon.2023.e15173>
4. 2000: Long-range foraging by the honey-bee, Apis mellifera L.: Honey-bee foraging. Funct Ecol 14: 490-496
< M, Ratnieks FLW https://doi.org/10.1046/j.1365-2435.2000.00443.x>
5. 2021: Organochlorine pesticide residues in Uganda’s honey as a bioindicator of environmental contamination and reproductive health implications to consumers. Ecotoxicol Environ Saf 214: 112094
< S, Nyanzi SA, Kwetegyeka J, Olisah C, Taiwo AM, Mubiru E, Tebandeke E, Matovu H, Odongo S, Abayi JJM, Ngeno EC, Sillanpää M, Ssebugere P https://doi.org/10.1016/j.ecoenv.2021.112094>
6. 2016: Does the honey bee “risk cup” runneth over? Estimating aggregate exposures for assessing pesticide risks to honey bees in agroecosystems. J Agric Food Chem 64: 13-20
< MR https://doi.org/10.1021/acs.jafc.5b01067>
7. 2015: Neonicotinoid residues in wildflowers, a potential route of chronic exposure for bees. J Environ Sci 49: 12731-12740
C, David A, Horwood J, Abdul-Sada A, Nicholls E, Hill E, Goulson D
8. 2021: Plant protection products residues assessment in the organic and conventional agricultural production. Sustainability 13: 1075
< V, Vuković G, Cara M, Kostić M, Stojanović T, Petrović A, Puvača N, Marinković D, Konstantinović B https://doi.org/10.3390/su13031075>
9. 2020: Pesticide residues in honey and their potential reproductive toxicity. Sci Total Environ 741: 139953
< Y https://doi.org/10.1016/j.scitotenv.2020.139953>
10. European Commision, Analytical quality control and method validation procedures for pesticides residues analysis in food and feed SANTE 11312/2021, 2022. Available at: https://www.eurl-pesticides.eu/docs/public/tmplt_article.asp?CntID=727. Accessed on: June 18, 2023
11. 2013: Trace level determination of pyrethroid and neonicotinoid insecticides in beebread using acetonitrile-based extraction followed by analysis with ultra-high-performance liquid chromatography–tandem mass spectrometry. J Chromatogr A 1316: 53-61
< B, Vauchez A, Vulliet E, Wiest L, Buleté A https://doi.org/10.1016/j.chroma.2013.09.088>
12. 2021: Organochlorine pesticides in honeybee, pollen and honey in Bursa, Turkey. Food Addit Contam B Surveill 14: 126-132
< ME, Sari MF, Esen F https://doi.org/10.1080/19393210.2021.1896583>
13. 2016: Screening of pesticide residues in honeybee wax comb by LC-ESI-MS/MS. A pilot study. Chemosphere 163: 44-53
< López S, Lozano A, Sosa A, Hernando MD, Fernández-Alba AR https://doi.org/10.1016/j.chemosphere.2016.07.008>
14. 2020: Assessing the resistance to acaricides in Varroa destructor from several Spanish locations. Parasitol Res 119: 3595-3601
< M, Martín-Hernández R, Hernández-Rodríguez CS, González-Cabrera J https://doi.org/10.1007/s00436-020-06879-x>
15. 2023: Availability of using honeybees as bioindicators of pesticide exposure in the vicinity of agricultural environments in Taiwan. Toxics 11: 703
< C-C, Yiin L-M https://doi.org/10.3390/toxics11080703>
16. 2020: Selection of pesticides to reduce human and environmental health risks: A global guideline and minimum pesticides list. Lancet Planet Health The 4: e56-e63
< PC, Murray K, Bach O, Bonilla MA, Neumeister L https://doi.org/10.1016/S2542-5196(19)30266-9>
17. 2023: Pesticide residues and metabolites in Greek honey and pollen: Bees and human health risk assessment. Foods 12: 706
< KM, Zafeiraki E, Manea-Karga E, Anastasiadou P, Machera K https://doi.org/10.3390/foods12040706>
18. Khalil M, Iqbal M, Turan V, Tauqeer HM, Farhad M, Ahmed A, Yasin S 2022: Household chemicals and their impact. Environ Micropollutants 201-232
19. 2018: Pollen and bee bread as new health-oriented products: A review. Trends Food Sci Technol 71: 170-180
< M, Piwowarek K, Kot AM, Błażejak S, Chlebowska-Śmigiel A, Wolska I https://doi.org/10.1016/j.tifs.2017.10.021>
20. 2016: Multi-residue method for the determination of pesticides and pesticide metabolites in honeybees by liquid and gas chromatography coupled with tandem mass spectrometry—Honeybee poisoning incidents. J Chromatogr A 1435: 100-114
< T, Niewiadowska A, Semeniuk S, Gaweł M, Borzęcka M, Posyniak A https://doi.org/10.1016/j.chroma.2016.01.045>
21. 2013: Widespread occurrence of chemical residues in beehive matrices from apiaries located in different landscapes of Western France. PloS One 6: e67007
< O, Piroux M, Puyo S, Thorin C, L’Hostis M, Wiest L, Buleté A, Delbac F, Pouliquen H https://doi.org/10.1371/journal.pone.0067007>
22. 2021: Honeybee and plant products as natural antimicrobials in enhancement of poultry health and production. Sustainability 13: 8467
< E, Kostić M, Vještica S, Milojević I, Puvača N https://doi.org/10.3390/su13158467>
23. 2015: Residues of organochlorine and synthetic pyrethroid pesticides in honey, an indicator of ambient environment, a pilot study. Chemosphere 120: 457-461
< FM, Haggag MN, Loutfy NM, Osman MAM, Ahmed MT https://doi.org/10.1016/j.chemosphere.2014.08.032>
24. 2019: Bee collected pollen and bee bread: Bioactive constituents and health benefits. Antioxidants 8: 568
< R, Stranț M, Varadi A, Topal E, Yücel B, Cornea-Cipcigan M, Campos MG, Vodnar DC https://doi.org/10.3390/antiox8120568>
25. 2010: Pests, pesticide use and alternative options in European maize production: Current status and future prospects. J Appl Entomol 134: 357-375
< M, Mouron P, Musa T, Bigler F, Pons X, Vasileiadis VP, Otto S, Antichi D, Kiss J, Pálinkás Z, Dorner Z, Van Der Weide R, Groten J, Czembor E, Adamczyk J, Thibord JB, Melander B, Nielsen GC, Poulsen RT, Oldenburg E https://doi.org/10.1111/j.1439-0418.2009.01491.x>
26. 2021: Effects of developmental exposure to pesticides in wax and pollen on honey bee (Apis mellifera) queen reproductive phenotypes. Sci Rep 11: 1020
< JP, Tarpy DR https://doi.org/10.1038/s41598-020-80446-3>
27. 2017: A worldwide survey of neonicotinoids in honey. Science 358: 109-111
< EAD, Mulhauser B, Mulot M, Mutabazi A, Glauser G, Aebi A https://doi.org/10.1126/science.aan3684>
28. 2009: Determination of pesticide residues in honey samples. Bull Environ Contam Toxicol 83: 818-821
< I https://doi.org/10.1007/s00128-009-9772-y>
29. 2023: Antibiotics and sulfonamides in water, sediment, and fish in an integrated production system. J Agron Technol Eng Manag 6: 851-856
< M, Puvača N, Kartalović B, Živkov Baloš M, Novakov N, Ljubojević Pelić D https://doi.org/10.55817/YVRR1215>
30. 2022: Detection and concentration of neonicotinoids and other pesticides in honey from honey bee colonies located in regions that differ in agricultural practices: implications for human and bee health. Int J Environ Res Public Health 19: 8199
< G, Ramos de Robles SL, Macias-Macias JO, Petukhova T, Guzman-Novoa E https://doi.org/10.3390/ijerph19138199>
31. 2022: Screening and quantitation of pesticide residues in Indian honey samples by LC-MS/MS and GC-MS/MS. Indian J Sci Technol 15: 1112-1123
< J, Vincy MV, Brilliant R https://doi.org/10.17485/IJST/v15i23.120>
32. 2018: Honeybee and medicinal plants products in poultry postantibiotic era production. J Agron Technol Eng Manag 1: 8-17
N
33. 2023: Microbial resistance to antibiotics and biofilm formation of bacterial isolates from different carp species and risk assessment for public health. Antibiotics 12: 143
< N, Ljubojević Pelić D, Pelić M, Bursić V, Tufarelli V, Piemontese L. Vuković G https://doi.org/10.3390/antibiotics12010143>
34. 2017: Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: A review. J Environ Manage 190: 208-222
< M, Shanker U, Jassal V https://doi.org/10.1016/j.jenvman.2016.12.068>
35. 2017: Gas chromatography-tandem mass spectrometry multi-residual analysis of contaminants in Italian honey samples. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 34: 800-808
M, Di Bella G, Fede MR, Lo Turco V, Potortě AG, Rando R, Russo MT, Dugo G
36. 2017: The challenges of predicting pesticide exposure of honey bees at landscape level. Sci Rep 7: 3801
< N, San Martin G, Bruneau E, Delcourt C, Hautier L https://doi.org/10.1038/s41598-017-03467-5>
37. 2017: Phytoremediation of organochlorine pesticides: Concept, method, and recent developments. Int J Phytoremediation 19: 834-843
< T, Singh DK https://doi.org/10.1080/15226514.2017.1290579>
38. 2019: Natural product medicines for honey bees: Perspective and protocols. Insects 10: 356
< JP, Collins WR, Schwarz RS, Chen Y, Grubbs K, Huang Q, Lopez D, Peterson R, Evans JD https://doi.org/10.3390/insects10100356>
39. 2021: Agriculture development, pesticide application and its impact on the environment. Int J Environ Res Public Health 18: 1112
< M, Daniel Ruan H, Wang L, Lyu J, Sadler R, Connell D, Chu C, Phung DT https://doi.org/10.3390/ijerph18031112>
40. 2022: Food safety policy in the European Union. J Agron Technol Eng Manag 5: 712-717
< J, Puvača N, Giannenas I, Tufarelli V, Ignjatijević S https://doi.org/10.55817/EMRK6646>
41. 2020: Analysis of consumers’ willingness to pay for organic and local honey in Serbia. Sustainability 12: 4686
< J, Ignjatijević S, Kiurski J, Milenković J, Milojević I https://doi.org/10.3390/su12114686>
42. 2020: Influence of land use on chlorpyrifos and persistent organic pollutant levels in honey bees, bee bread and honey: Beehive exposure assessment. Sci Total Environ 713: 136554
< A, Maggi M, Ondarza PM, Szawarski N, Miglioranza KSB https://doi.org/10.1016/j.scitotenv.2020.136554>
43. 2011: Determination of pesticide residues in food matrices using the QuEChERS methodology. Food Chem 125: 803-812
< A, Biziuk M https://doi.org/10.1016/j.foodchem.2010.09.094>
44. 2020: Soil biological activity as an indicator of soil pollution with pesticides – A review. Appl Soil Ecol 147: 103356
< E, Jabłońska-Trypuć A, Wydro U, Butarewicz A, Łozowicka B https://doi.org/10.1016/j.apsoil.2019.09.006>
45. 2018: Neonicotinoid residues in UK honey despite European Union moratorium. PLoS ONE 13: e0189681
< BA, Ridding L, Freeman SN, Pereira MG, Sleep D, Redhead J https://doi.org/10.1371/journal.pone.0189681>
46. 2022: Analysis of honey bee exposure to multiple pesticide residues in the hive environment. Sci Total Environ 805: 150292
< J, He Q, Liu Q, Wang Z, Yin F, Chai Y, Yang Q, Jiang X, Liao M, Yu L, Jiang W, Cao H https://doi.org/10.1016/j.scitotenv.2021.150292>
47. 2022: Pesticides in ambient air, influenced by surrounding land use and weather, pose a potential threat to biodiversity and humans. Sci Total Environ 838: 156012
< JG, Kruse-Plaß M, Schlechtriemen U, Gruber E, Peer M, Nadeem I, Formayer H, Hutter HP, Landler L https://doi.org/10.1016/j.scitotenv.2022.156012>