Acta Vet. Brno 2024, 93: 3-10

https://doi.org/10.2754/avb202493010003

Efficacy of targeted therapy of environmental mastitis using on-farm culturing in small dairy herds

Josef Prášek1, Bohdana Řezníčková1, Gabriela Malá2, Pavel Novák2, Jiří Smola1

1Veterinary University Brno, Faculty of Veterinary Medicine, Ruminant and Swine Clinic, Brno, Czech Republic
2Institute of Animal Sciences, Livestock Technology and Management, Prague Uhříněves, Czech Republic

Received November 6, 2023
Accepted February 19, 2024

References

1. Bauman CA, Barkema HW, Dubuc J, Keefe GP, Kelton DF 2018: Canadian National Dairy Study: Herd-level milk quality. J Dairy Sci 101: 2679-2691 <https://doi.org/10.3168/jds.2017-13336>
2. Bazzanella B, Lichtmannsperger K, Urbantke V, Tichy A, Wittek T, Baumgartner M 2020: Effect of on-farm milk culturing on treatment outcomes and usage of antimicrobials in mastitis therapy: A field study. Tierärztl Monat 107: 135-146
3. Brennecke J, Falkenberg U, Wente N, Krömker V 2021: Are severe mastitis cases in dairy cows associated with bacteremia? Animals (Basel) 11: 410 <https://doi.org/10.3390/ani11020410>
4. Deluyker HA, Chester ST, Van Oye SN 1999: A multilocation clinical trial in lactating dairy cows affected with clinical mastitis to compare the efficacy of treatment with intramammary infusions of a lincomycin/neomycin combination with an ampicillin/cloxacillin combination. J Vet Pharmacol Ther 22: 274-282 <https://doi.org/10.1046/j.1365-2885.1999.00205.x>
5. De Vliegher S, Ohnstad I, Piepers S 2018: Management and prevention of mastitis: A multifactorial approach with a focus on milking, bedding and data-management. J Integr Agricul 17: 1214-1233 <https://doi.org/10.1016/S2095-3119(17)61893-8>
6. Dohoo IR, Smith J, Andersen S, Kelton DF, Godden S; Mastitis Research Workers‘ Conference 2011: Diagnosing intramammary infections: evaluation of definitions based on a single milk sample. J Dairy Sci 94: 250-261 <https://doi.org/10.3168/jds.2010-3559>
7. European Parliament and the Council of the European Union 2019: Regulation (EU) 2019/6 of the European Parliament and of the Council of 11 December 2018 on veterinary medicinal products and repealing Directive 2001/82/EC. Official Journal of the European Union: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R0006&from=EN
8. Ferreira JC, Gomes MS, Bonsaglia ECR, Canisso IF, Garrett EF, Stewart JL, Zhou Z, Lima FS 2018: Comparative analysis of four commercial on-farm culture methods to identify bacteria associated with clinical mastitis in dairy cattle. PLoS One 13: e0194211 <https://doi.org/10.1371/journal.pone.0194211>
9. Fuenzalida MJ, Ruegg PL 2019a: Negatively controlled, randomized clinical trial to evaluate use of intramammary ceftiofur for treatment of nonsevere culture-negative clinical mastitis. J Dairy Sci 102: 3321-3338 <https://doi.org/10.3168/jds.2018-15497>
10. Fuenzalida MJ, Ruegg PL 2019b: Negatively controlled, randomized clinical trial to evaluate intramammary treatment of nonsevere, gram-negative clinical mastitis. J Dairy Sci 102: 5438-5457 <https://doi.org/10.3168/jds.2018-16156>
11. Ganda EK, Bisinotto RS, Decter DH, Bicalho RC, Bach H 2016: Evaluation of an On-Farm Culture System (Accumast) for Fast Identification of Milk Pathogens Associated with Clinical Mastitis in Dairy Cows. PLoS One 11: e0155314 <https://doi.org/10.1371/journal.pone.0155314>
12. Hillerton JE, Kliem KE 2002: Effective treatment of Streptococcus uberis clinical mastitis to minimize the use of antibiotics. J Dairy Sci 85: 1009-1014 <https://doi.org/10.3168/jds.S0022-0302(02)74161-1>
13. Hoe FG, Ruegg PL 2005: Relationship between antimicrobial susceptibility of clinical mastitis pathogens and treatment outcome in cows. J Am Vet Med Assoc 227: 1461-1468 <https://doi.org/10.2460/javma.2005.227.1461>
14. de Jong E, McCubbin KD, Speksnijder D, Dufour S, Middleton JR, Ruegg PL, Lam TJGM, Kelton DF, McDougall S, Godden SM, Lago A, Rajala-Schultz PJ, Orsel K, De Vliegher S, Krömker V, Nobrega DB, Kastelic JP, Barkema HW 2023: Invited review: Selective treatment of clinical mastitis in dairy cattle. J Dairy Sci 106: 3761-3778 <https://doi.org/10.3168/jds.2022-22826>
15. Lago A, Godden SM, Bey R, Ruegg PL, Leslie K 2011a: The selective treatment of clinical mastitis based on on-farm culture results: I. Effects on antibiotic use, milk withholding time, and short-term clinical and bacteriological outcomes. J Dairy Sci 94: 4441-4456 <https://doi.org/10.3168/jds.2010-4046>
16. Lago A, Godden SM, Bey R, Ruegg PL, Leslie K 2011b: The selective treatment of clinical mastitis based on on-farm culture results: II. Effects on lactation performance, including clinical mastitis recurrence, somatic cell count, milk production, and cow survival. J Dairy Sci 94: 4457-4467 <https://doi.org/10.3168/jds.2010-4047>
17. Lago A, Luiz D, Pearce D, Tovar C, Zaragoza J 2016: Effect of the selective treatment of gram-positive clinical mastitis cases versus blanket therapy. J Anim Sci 94: 75-76
18. Leimbach S, Krömker V 2018: Laboratory evaluation of a novel rapid tube test system for differentiation of mastitis-causing pathogen groups. J Dairy Sci 101: 6357-6365 <https://doi.org/10.3168/jds.2017-14198>
19. Lipkens Z, Piepers S, De Vliegher S 2023: Impact of selective dry cow therapy on antimicrobial consumption, udder health, milk yield, and culling hazard in commercial dairy herds. Antibiotics 12: 901 <https://doi.org/10.3390/antibiotics12050901>
20. Mansion-de Vries EM, Knorr N, Paduch J-H, Zinke C, Hoedemaker M, Krömker V 2014: A field study evaluation of Petrifilm™ plates as a 24-h rapid diagnostic test for clinical mastitis on a dairy farm. Prev Vet Med 113: 620-624 <https://doi.org/10.1016/j.prevetmed.2013.11.019>
21. Mansion-de Vries EM, Lücking J, Wente N, Zinke C, Hoedemaker M, Krömker V 2016: Comparison of an evidence-based and a conventional mastitis therapy concept with regard to cure rates and antibiotic usage. Milk Science International 69: 27-32
22. McDougall S, Williamson J, Gohary K, Lacy-Hulbert J 2021: Detecting intramammary infections at the end of lactation in dairy cows. J Dairy Sci 104: 10232-10249 <https://doi.org/10.3168/jds.2020-20036>
23. McDougall S, Clausen LM, Hussein HM, Compton CWR 2022: Therapy of subclinical mastitis during lactation. Antibiotics (Basel) 11: 209 <https://doi.org/10.3390/antibiotics11020209>
24. Oliveira L, Ruegg PL 2014: Treatments of clinical mastitis occurring in cows on 51 large dairy herds in Wisconsin. J Dairy Sci 97: 5426-5436 <https://doi.org/10.3168/jds.2013-7756>
25. Patel K, Godden SM, Royster EE, Timmerman JA, Crooker BA, McDonald N 2017: Pilot study: Impact of using a culture-guided selective dry cow therapy program targeting quarter- level treatment on udder health and antibiotic use. Bov Pract 51: 48-57 <https://doi.org/10.21423/bovine-vol51no1p48-57>
26. Pinzón-Sánchez C, Cabrera VE, Ruegg PL 2011: Decision tree analysis of treatment strategies for mild and moderate cases of clinical mastitis occurring in early lactation. J Dairy Sci 94: 1873-1892 <https://doi.org/10.3168/jds.2010-3930>
27. Pol M, Ruegg PL 2007: Treatment practices and quantification of antimicrobial drug usage in conventional and organic dairy farms in Wisconsin. J Dairy Sci 90: 249-261 <https://doi.org/10.3168/jds.S0022-0302(07)72626-7>
28. Prasek J, Becvar O, Smola J 2010: On-farm culturing system as a tool for effective treatment and control of mastitis in dairy herds. XI. Middle European Buiatrics Congress. Veterinarstvi 60, 1: Supplementum, 140
29. Royster E, Godden S, Goulart D, Dahlke A, Rapnicki P, Timmerman J 2014: Evaluation of the Minnesota Easy Culture System II Bi-Plate and Tri-Plate for identification of common mastitis pathogens in milk. J Dairy Sci 97: 3648-3659 <https://doi.org/10.3168/jds.2013-7748>
30. Rowe S, Godden SM, Nydam DW, Gorden PJ, Lago A, Vasquez AK, Royster E, Timmerman J, Thomas MJ 2020: Evaluation of rapid culture, a predictive algorithm, esterase somatic cell count and lactate dehydrogenase to detect intramammary infection in quarters of dairy cows at dry-off. Prev Vet Med 179: 104982 <https://doi.org/10.1016/j.prevetmed.2020.104982>
31. Ruegg PL 2017: A 100-Year Review: Mastitis detection, management, and prevention. J Dairy Sci 100: 10381-10397 <https://doi.org/10.3168/jds.2017-13023>
32. Sipka A, Wieland M, Biscarini F, Rossi RM, Roman N, Santisteban C, Moroni P, Nydam DV 2021: Short communication: Comparative performance of 3 on-farm culture systems for detection of mastitis pathogens interpreted by trained and untrained observers. J Dairy Sci 104: 4936-4941 <https://doi.org/10.3168/jds.2020-19166>
33. Suojala L, Kaartinen L, Pyörälä S 2013: Treatment for bovine Escherichia coli mastitis - an evidence-based approach. J Vet Pharmacol Ther 36: 521-531 <https://doi.org/10.1111/jvp.12057>
34. Svennesen L, Skarbye AP, Farre M, Astrup LB, Halasa T, Krömker V, Denwood M, Kirkeby C 2023: Treatment of mild to moderate clinical bovine mastitis caused by gram-positive bacteria: A noninferiority randomized trial of local penicillin treatment alone or combined with systemic treatment. J Dairy Sci 106: 5696-5714 <https://doi.org/10.3168/jds.2022-22993>
35. Viora L, Graham EM, Mellor DJ, Reynolds K, Simoes PB, Geraghty TE 2014: Evaluation of a culture-based pathogen identification kit for bacterial causes of bovine mastitis. Vet Rec 175: 89 <https://doi.org/10.1136/vr.102499>
36. Wittek T, Tichy A, Grassauer B, Egger-Danner C 2018: Retrospective analysis of Austrian health recording data of antibiotic or nonantibiotic dry-off treatment on milk yield, somatic cell count, and frequency of mastitis in subsequent lactation. J Dairy Sci 101: 1456-1463 <https://doi.org/10.3168/jds.2017-13385>
front cover
  • ISSN 0001-7213 (printed)
  • ISSN 1801-7576 (electronic)

Current issue

Archive