Acta Vet. Brno 2024, 93: 37-45

https://doi.org/10.2754/avb202493S11S37

Cultivation tests for rapid detection of mastitis pathogens in dairy cows

Zuzana Farkašová1, František Zigo1, Šimon Halás1, Jana Záhumenská2, Ewa Pecka-Kiełb3, Mária Vargová4

1University of Veterinary Medicine and Pharmacy, Department of Animal Nutrition and Husbandry, Košice, Slovakia
2University of Veterinary Medicine and Pharmacy, Department of Hygiene, Technology and Health Food Safety, Košice, Slovakia
3Wroclaw University of Environmental and Life Sciences, Department of Biostructure and Animal Physiology, Wroclaw, Poland
4University of Veterinary Medicine and Pharmacy, Department of the Public Veterinary Medicine and Animal Welfare, Košice, Slovakia

Received March 18, 2024
Accepted December 12, 2024

References

1. Bar D, Tauer LW, Bennett G, Gonzalez RN, Hertl JA, Schukken YH, Schulte HF, Welcome FL, Gröhn YT 2008: The cost of generic clinical mastitis in dairy cows as estimated by using dynamic programming. J Dairy Sci 91: 2205-2214 <https://doi.org/10.3168/jds.2007-0573>
2. Becker K, Schubert S 2020: MALDI-TOF MS Application for susceptibility testing of microorganisms. Front Microbiol 11: 568891 <https://doi.org/10.3389/fmicb.2020.568891>
3. Bergonier D, de Crémoux R, Rupp R, Lagriffoul G, Berthelot X 2003: Mastitis of dairy small ruminants. Vet Res 34: 689-716 <https://doi.org/10.1051/vetres:2003030>
4. Bortolami A, Fiore E, Gianesella M, Corrň M, Catania S, Morgante M. 2015: Evaluation of the udder health status in subclinical mastitis affected dairy cows through bacteriological culture, somatic cell count and thermographic imaging. Pol J Vet Sci 18: 104 <https://doi.org/10.1515/pjvs-2015-0104>
5. Bradley AJ 2002: Bovine mastitis: an evolving disease. Vet J 164: 116-128 <https://doi.org/10.1053/tvjl.2002.0724>
6. Cheng WN, Han SG 2020: Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments — A review. Asian-Australas J Anim Sci 33: 1699-1713 <https://doi.org/10.5713/ajas.20.0156>
7. Cobirka M, Tancin V, Slama P 2020: Epidemiology and classification of mastitis. Animals 10: 2212 <https://doi.org/10.3390/ani10122212>
8. Dohoo IR, Smith J, Andersen S, Kelton DF, Godden S 2011: Diagnosing intramammary infections: Evaluation of definitions based on a single milk sample. J Dairy Sci 94: 250-261 <https://doi.org/10.3168/jds.2010-3559>
9. Ferreira JC, Gomes MS, Bonsaglia ECR, Canisso IF, Garrett EF, Stewart JL, Zhou Z, Lima FS 2018: Comparative analysis of four commercial on-farm culture methods to identify bacteria associated with clinical mastitis in dairy cattle. PLoS ONE 13: e0194211 <https://doi.org/10.1371/journal.pone.0194211>
10. Halasa T, Huijps K, Osteras O, Hogeveen H 2007: Economic effects of bovine mastitis and mastitis management: A review. Vet Quart 29: 18-31 <https://doi.org/10.1080/01652176.2007.9695224>
11. Hisira V, Slovak P, Marcekova P, Kadasi M, Mudron P 2020. Assessment of udder health in lame cows. Acta Vet Brno 89: 133-140 <https://doi.org/10.2754/avb202089020133>
12. Hogeveen H, Huijps K, Lam TJ 2021: Economic aspects of mastitis: New developments. New Zeal Vet J 59: 16-23 <https://doi.org/10.1080/00480169.2011.547165>
13. Holko I, Tancin V, Vrskova, M, Tvarozkova K 2019: Prevalence and antimicrobial susceptibility of udder pathogens isolated from dairy cows in Slovakia. J Dairy Res 86: 436-439 <https://doi.org/10.1017/S0022029919000694>
14. Jackson P, Cockcroft P 2002: Clinical Examination of Farm Animals. Blackwell Science Ltd., Oxford, UK, pp 154-166
15. Lipkens Z, Piepers S, De Visscher A, De Vliegher S 2019: Evaluation of test-day milk somatic cell count information to predict intramammary infection with major pathogens in dairy cattle at drying off. J Dairy Sci 102: 4309-4321 <https://doi.org/10.3168/jds.2018-15642>
16. Malinowski E, Lassa H, Kłlossowska A, Smulski S, Markiewicz H, Kaczmarowski M 2006: Etiological agents of dairy cow’s mastitis in western part of Poland. Pol J Vet Sci 9: 191-194
17. McDougall S, Clausen LM, Hussein HM, Compton CWR 2022: Therapy of subclinical mastitis during lactation. Antibiotics (Basel) 11: 209 <https://doi.org/10.3390/antibiotics11020209>
18. Morales-Ubaldo AL, Rivero-Perez N, Valladares-Carranza B, Velázquez-Ordońez V, Delgadillo-Ruiz L, Zaragoza-Bastida A 2023: Bovine mastitis, a worldwide impact disease: prevalence, antimicrobial resistance, and viable alternative approaches. Vet Anim Sci 21: 100306 <https://doi.org/10.1016/j.vas.2023.100306>
19. NMC 2001: National Mastitis Council Recommended Mastitis Control Program. Mtg. Proc., Reno, NV. Natl. Mastitis Counc., Inc., WI, 408 p.
20. Prasek J, Becvar O, Smola J 2010: On-farm culturing system as a tool for effective treatment and control of mastitis in dairy herds. XI. Middle European Buiatrics Congress. Veterinarstvi 60 (Supplementum): 140
21. Prasek J, Reznickova B, Mala, G, Novak P, Smola J 2024: Efficacy of targeted therapy of environmental mastitis using on-farm culturing in small dairy herds. Acta Vet Brno 93: 3-10 <https://doi.org/10.2754/avb202493010003>
22. Rollin E, Dhuyvetter KC, Overton, MW 2015: The cost of clinical mastitis in the first 30 days of lactation: An economic modeling tool. Prev Vet Med 122: 257-264 <https://doi.org/10.1016/j.prevetmed.2015.11.006>
23. Saila S, Bork O, Tucker IG, Cranefield S, Bryan MA 2023: Evaluation of an on-farm culture system for the detection of subclinical mastitis pathogens in dairy cattle. JDS Communications 4: 298-302 <https://doi.org/10.3168/jdsc.2022-0312>
24. Sameer R, Organji HH, Abulreesh KE, Gamal EH, Osman MH, Almalki K 2018: Diversity and characterization of Staphylococcus spp. in food and dairy products: a foodstuff safety assessment. J Microbiol Biotechnol Food Sci 7: 586-593
25. Sawant AA, Gillespie BE, Oliver SP 2009: Antimicrobial susceptibility of coagulase-negative Staphylococcus species isolated from bovine milk. Vet Microbiol 134: 73-81 <https://doi.org/10.1016/j.vetmic.2008.09.006>
26. Skarda J, Skardova O 2000: Výživa (in Czech, Nutrition). In: Program péče o produkci a zdraví stáda dojnic (in Czech, Program for the care of the production and health of dairy cows). Ústav zemědělských a potravinářských informací, Praha, pp 41-55
27. Stanek P, Zółkiewski P, Janus E 2024: A Review on mastitis in dairy cows research: Current status and future perspectives. Agriculture 14: 1292 <https://doi.org/10.3390/agriculture14081292>
28. Tancin V, Tancinova D 2008: Machine milking and milk quality. Nitra: SCPV: 47-74
29. Thorberg BM, Kuhn I, Aarestrup FM, Brandstrom B, Jonsson P, Danielsson-Tham ML 2006: Pheno- and genotyping of Staphylococcus epidermidis isolated from bovine milk and human skin. Vet Microbiol 115: 163-172 <https://doi.org/10.1016/j.vetmic.2006.01.013>
30. Tommasoni Ch, Fiore E, Lisuzzo A, Gianesella M 2023: Mastitis in dairy cattle: On-farm diagnostics and future perspectives. Animals (Basel) 15: 2538 <https://doi.org/10.3390/ani13152538>
31. Woudstra S, Wente N, Zhang Y, Leimbach S, Kirkeby C, Gussmann MK, Krömker V 2023: Reservoirs of Staphylococcus spp. and Streptococcus spp. associated with intramammary infections of dairy cows. Pathogens 12: 699 <https://doi.org/10.3390/pathogens12050699>
front cover
  • ISSN 0001-7213 (printed)
  • ISSN 1801-7576 (electronic)

Current issue

Archive