Acta Vet. Brno 2024, 93: 201-208
https://doi.org/10.2754/avb202493020201
The study of testosterone and tacrolimus roles on gastrocnemius muscle following experimental sciatic nerve injury in rats
References
1. MA, Kim GE, Kim J, Kim BH, Kim YK, Jeong SE, Kim TJ, Park HK, Kim MS 2019: How long should we wait to create the Goutallier stage 2 fatty infiltrations in the rabbit shoulder for repairable rotator cuff tear model? Biomed Res Int 2019: 7387131
2. SC, Allsing S, Botte MJ 1996: Time course of muscle atrophy and recovery following a phenol‐induced nerve block. Muscle Nerve 19: 497-504
<https://doi.org/10.1002/mus.880190404>
3. TJ, Khan T, Jones KJ 1999: Androgen induced acceleration of functional recovery after rat sciatic nerve injury. Restor Neurol Neurosci 15: 289-295
4. BH, Cerri PS, Spolidório LC, Miraglia SM, Sasso-Cerri E 2009: Structural alterations in the seminiferous tubules of rats treated with immunosuppressor tacrolimus. Reprod Biol Endocrinol 25: 7-19
5. FK, Fattahian H, Asghari A, Mortazavi P 2022: The comparative effects of estrogen and tacrolimus on crushed sciatic nerve regeneration in male mice: functional and histopathological evaluation. Vet Res Forum 13: 241
6. KN, Alexander TD, Tanzer L, Poletti A, Jones KJ 2008: Androgen regulates neuritin mRNA levels in an in vivo model of steroid-enhanced peripheral nerve regeneration. J Neurotrauma 25: 561-566
<https://doi.org/10.1089/neu.2007.0466>
7. AI, Oliveira PA, Duarte JA, Ferreira R, Ginja M 2013: Ultrasonographic evaluation of gastrocnemius muscle in a rat model of N-methyl-N-nitrosourea-induced mammary tumor. In Vivo 27: 803-807
8. X, Yuan W 2015: Dexamethasone enhanced functional recovery after sciatic nerve crush injury in rats. Biomed Res Int 2015: 627923
9. KCBG, Polacow MLO, Guirro RRJ, Campos GER, Somazz MC, Pinto VF, Fuentes CB, Teodori RM 2005: Morphometric analysis of muscle and conjunctive tissue after denervation and low-frequency electrical stimulation. Braz J Phys Ther 9: 235-241
10. SW, Johnson PJ, Mackinnon SE 2011: Clinical strategies to enhance nerve regeneration in composite tissue allotransplantation. Hand Clin 27: 495-509
<https://doi.org/10.1016/j.hcl.2011.07.002>
11. ED, Betik AC, Timpani CA, Tarle J, Zhang X, Hayes A 2020: Testosterone suppression does not exacerbate disuse atrophy and impairs muscle recovery that is not rescued by high protein. J Appl Physiol 129: 5-16
<https://doi.org/10.1152/japplphysiol.00752.2019>
12. XZ, Ma JJ, Wang HQ, Hu TM, Sun B, Gao YF, Liu SB, Wang W, Wang P 2017: Brain injury in combination with tacrolimus promotes the regeneration of injured peripheral nerves. Neural Regen Res 12: 987
<https://doi.org/10.4103/1673-5374.219053>
13. F 2008: Cellular and molecular mechanisms responsible for the action of testosterone on human skeletal muscle. A basis for illegal performance enhancement. Br J Pharmacol 154: 522-528
<https://doi.org/10.1038/bjp.2008.118>
14. J, Mackinnon SE, Watanabe O, Ball DJ, Ming Gu X, Hunter DA, Kuzon Jr WM 1997: The effect of duration of muscle denervation on functional recovery in the rat model. Muscle Nerve 20: 858-866
<https://doi.org/10.1002/(SICI)1097-4598(199707)20:7<858::AID-MUS10>3.0.CO;2-O>
15. HT, Senden JM, Gijsen AP, Kempa S, Van Loon LJ, Spuler S 2018: Muscle atrophy due to nerve damage is accompanied by elevated myofibrillar protein synthesis rates. Front Physiol 31: 1220
<https://doi.org/10.3389/fphys.2018.01220>
16. H, Fujihira S, Ueno H, Kagawa M, Katsuoka Y, Mori H 2003: Ultrastructural study on cytotoxic effects of cyclosporine A in spermiogenesis in rats. Med Electron Microsc 36: 183-191
<https://doi.org/10.1007/s00795-003-0213-4>
17. DJ, Moore FM, George JW 2016: Mitotic count and the field of view area: time to standardize. Vet Pathol 53: 7-9
<https://doi.org/10.1177/0300985815593349>
18. TH, de Boer SA, Wahegaonkar AL, Bishop AT, Shin AY, Hovius SE, Selles RW 2013: A new approach to assess the gastrocnemius muscle volume in rodents using ultrasound; comparison with the gastrocnemius muscle index. PloS One 8: e54041
<https://doi.org/10.1371/journal.pone.0054041>
19. S M, Ghorbanzadeh B, Behmanesh M A, Ghobadi K, Amirgholami R 2021: The effect of captopril and losartan on tacrolimus-induced testicular toxicity in rats. Shiraz E-Med J 22: e106199
<https://doi.org/10.5812/semj.106199>
20. A, Tamgadge S, Tamgadge A, Yadav KS, Giri A, Wankhede M 2017: Total serum protein estimation and its correlation with clinical and histopathological grading using Masson’s trichrome stain in patients of oral submucous fibrosis. Contemp Clin Dent 8: 286-292
21. R, Romanello V, Sandri M 2021: Mechanisms of muscle atrophy and hypertrophy: Implications in health and disease. Nat Commun 12: 1-12
<https://doi.org/10.1038/s41467-020-20123-1>
22. M, Agarwala S, Datta Gupta S, Das SN, Jha P, Misro MM, Mitra DK 1998: Effect of cyclosporine on fertility in male rats. Pediatr Surg Int 13: 388-391
<https://doi.org/10.1007/s003830050346>
23. W, Sun C, Lin H, Zhao H, Wang J, Ma H, Chen B, Xiao Z, Dai J 2009: The effect of collagen-binding NGF-β on the promotion of sciatic nerve regeneration in a rat sciatic nerve crush injury model. Biomaterials 30: 4649-4656
<https://doi.org/10.1016/j.biomaterials.2009.05.037>
24. J, Tze WJ, Murase N, Starzl TE 1994: Effect of FK506 on rat Leydig cell function--in vivo and in vitro study. Metabolism 43: 533-537
<https://doi.org/10.1016/0026-0495(94)90191-0>
25. Valentine BA, McGavin MD, Zachary JF 2011: Skeletal muscle in pathologic basis of veterinary disease. In: Zachary JF, McGavin MD (Eds): Pathologic Basis of Veterinary Disease. 5th edn. Elsevier Mosby, pp 973-1040
26. E, Ceballos D, Vilches JJ, Navarro X 2000: Influence of aging on peripheral nerve function and regeneration. J Peripher Nerv Syst 5: 191-208
<https://doi.org/10.1111/j.1529-8027.2000.00026.x>
27. JC, Dyck, PJB 2015: Peripheral neuropathy: a practical approach to diagnosis and symptom management. Mayo Clin Proc 90: 940-951
<https://doi.org/10.1016/j.mayocp.2015.05.004>
28. C, Wang C, Zhang T, Li D, Ni XF, Lin JH, Sun L, Chen B 2020: Exploring the mechanism of skeletal muscle in a tacrolimus-induced posttransplantation diabetes mellitus model on gene expression profiles. J Diabetes Res 2020: 6542346
<https://doi.org/10.1155/2020/6542346>

