Acta Vet. Brno 2024, 93: 159-167

https://doi.org/10.2754/avb202493020159

Transcriptome blood profile of the Yili horse before and after training

Xueyan Li1, Jianwen Wang1,2,3, Xinkui Yao1,2,3, Yaqi Zeng1,2,3, Chuankun Wang1, Wanlu Ren1, Xinxin Yuan1, Tongliang Wang1, Jun Meng1,2,3

1Xinjiang Agricultural University, College of Animal Science, Urumqi City, Xinjiang Province, China
2Xinjiang Agricultural University, Horse Industry Research Institute, Urumqi City, Xinjiang Province, China
3Xinjiang Key Laboratory of Horse Breeding and Exercise Physiology, Urumqi City, Xinjiang Province, China

Received April 4, 2023
Accepted June 18, 2024

References

1. Castejon-Riber C, Riber C, Rubio MD, Agüera E, Muñoz A 2017: Objectives, principles, and methods of strength training for horses. J Equine Vet Sci 56: 93-103 <https://doi.org/10.1016/j.jevs.2017.04.011>
2. Cartier A, Hla T 2019: Sphingosine 1-phosphate: Lipid signaling in pathology and therapy. Sci 366: eaar5551 <https://doi.org/10.1126/science.aar5551>
3. Cohen P, Levy J.D, Zhang Y, Frontini A, Spiegelman BM 2014: Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 156: 304-316 <https://doi.org/10.1016/j.cell.2013.12.021>
4. Cordeiro LMS, Rabelo PCR, Moraes MM, Teixeira-Coelho F, Coimbra CC, Wanner SP, Soares DD 2017: Physical exercise-induced fatigue: the role of serotonergic and dopaminergic systems. Braz J Med Biol Res 50: e6432 <https://doi.org/10.1590/1414-431x20176432>
5. Ekici S, Ozmen O 2020: Affecting Lipid Metabolism Salivary MicroRNAs Expressions in Arabian Racehorses Before and After the Race. J Equine Vet Sci 93: 103218 <https://doi.org/10.1016/j.jevs.2020.103218>
6. Farries G, Bryan K, McGivney CL, McGettigan PA, Gough KF, Browne JA, MacHugh DE, Katz LM, Hill EW 2019: Expression quantitative trait loci in equine skeletal muscle reveals heritable variation in metabolism and the training responsive transcriptome. Front Genet 10: 1215 <https://doi.org/10.3389/fgene.2019.01215>
7. Gu T, Xu G, Jiang C, Hou L, Wu Z, Wang C 2019: PRDM16 represses the pig white lipogenesis through promoting lipolysis activity. Biomed Res Int 1969413
8. Hrdlickova R, Toloue M, Tian B 2017: RNA-Seq methods for transcriptome analysis. Wiley Interdiscip Rev RNA 8: e1364 <https://doi.org/10.1002/wrna.1364>
9. Intapad S 2019: Sphingosine-1-phosphate signaling in blood pressure regulation. American Journal of Physiology-Renal Physiology 317: F638-F640 <https://doi.org/10.1152/ajprenal.00572.2018>
10. Ishibashi J, Seale P 2015: Functions of Prdm16 in thermogenic fat cells. Temperature 2: 65-72 <https://doi.org/10.4161/23328940.2014.974444>
11. Ivanova S, Polajnar M, Narbona-Perez AJ, Hernandez-Alvarez MI, Frager P, Slobodnyuk K, Plana N, Nebreda AR, Palacin M, Gomis RR 2019: Regulation of death receptor signaling by the autophagy protein TP53INP2. EMBO J 38: e99300 <https://doi.org/10.15252/embj.201899300>
12. Jacobs RA, Rasmussen P, Siebenmann C, Diaz V, Gassmann M, Pesta D, Gnaiger E, Nordsborg NB, Robach P, Lundby C 2011: Determinants of time trial performance and maximal incremental exercise in highly trained endurance athletes. J Appl Physiol 111: 1422-1430 <https://doi.org/10.1152/japplphysiol.00625.2011>
13. Li Q, Li Y, Lei C, Tan Y, Yi G 2021: Sphingosine-1-phosphate receptor 3 signaling. Clin Chim Acta 519: 32-39 <https://doi.org/10.1016/j.cca.2021.03.025>
14. McGinley MP, Cohen JA 2021: Sphingosine 1-phosphate receptor modulators in multiple sclerosis and other conditions. Lancet 398: 1184-1194 <https://doi.org/10.1016/S0140-6736(21)00244-0>
15. Purvis D, Gonsalves S, Deuster PA 2010: Physiological and psychological fatigue in extreme conditions: overtraining and elite athletes. PMR 2: 442-450 <https://doi.org/10.1016/j.pmrj.2010.03.025>
16. Ropka-Molik K, Stefaniuk-Szmukier M, Ukowski K, Piórkowska K, Gurgul A, Bugno-Poniewierska M 2017: Transcriptome profiling of Arabian horse blood during training regimens. BMC Genetics 18: 1-13 <https://doi.org/10.1186/s12863-017-0499-1>
17. Sammani S, Moreno-Vinasco L, Mirzapoiazova T, Singleton PA, Chiang ET, Evenoski CL, Wang T, Mathew B, Husain A, Moitra J 2010: Differential effects of sphingosine 1-phosphate receptors on airway and vascular barrier function in the murine lung. Am J Respir Cell Mol Biol 43: 394-402 <https://doi.org/10.1165/rcmb.2009-0223OC>
18. Sellami M, Abderrahman AB, Casazza GA, Kebsi W, Lemoine-Morel S, Bouguerra L, Zouhal H 2014: Effect of age and combined sprint and strength training on plasma catecholamine responses to a Wingate-test. Eur J Appl Physiol 114: 969-982 <https://doi.org/10.1007/s00421-014-2828-7>
19. Shi S, Zhang Y, Liao H.J, Qiu W, Zeng Z, Ma J 2014: Analysis of levels of inflammation and influential factors among athletes population with long-term intense exercise training. China Trop Med 14: 20-22+44
20. Singhal V, Maffazioli GD, Ackerman KE, Lee H, Elia EF, Woolley R, Kolodny G, Cypess AM, Misra M 2016: Effect of chronic athletic activity on brown fat in young women. PLoS One 11: e0156353 <https://doi.org/10.1371/journal.pone.0156353>
21. Song QJ, Xi GS, Jia YS, Liu HT, Cheng HQ 2017: Research progress of dopa decarboxylase and its correlation with neurological diseases. Progress in Modern Biomedicine 17: 1595
22. Valente A, Jamurtas AZ, Koutedakis Y, Flouris AD 2015: Molecular pathways linking non-shivering thermogenesis and obesity: focusing on brown adipose tissue development. Biol Rev Camb Philos Soc 90: 77-88 <https://doi.org/10.1111/brv.12099>
23. Wang H, Huang H, Ding SF 2018: Sphingosine-1-phosphate promotes the proliferation and attenuates apoptosis of Endothelial progenitor cells via S1PR1/S1PR3/PI3K/Akt pathway. Cell Biol Int 42: 1492-1502 <https://doi.org/10.1002/cbin.10991>
24. Xia WH, Li J, Su C, Yang Z, Chen L, Wu F, Zhang YY, Yu BB, Qiu YX, Wang SM, et al 2012: Physical exercise attenuates age-associated reduction in endothelium-reparative capacity of endothelial progenitor cells by increasing CXCR4/JAK-2 signaling in healthy men. Aging Cell 11: 111-119 <https://doi.org/10.1111/j.1474-9726.2011.00758.x>
25. Xu Y,Wan W 2019: TP53INP2 mediates autophagic degradation of ubiquitinated proteins through its ubiquitin-interacting motif. FEBS Lett 593: 1974-1982 <https://doi.org/10.1002/1873-3468.13467>
26. Yamanishi K, Maeda S, Kuwahara Otani S, Hashimoto T, Ikubo K, Mukai K, Nakasho K, Gamachi N, El-Darawish Y, Li W 2018: Deficiency in interleukin-18 promotes differentiation of brown adipose tissue resulting in fat accumulation despite dyslipidemia. J Transl Med 16: 1-13
27. Yang XR, Yang DW, Yu B, Huang ZQ 2010: Research Advances on PRDM16. Chinese Journal of Animal Nutrition 22: 1477-1481
28. Zeng YQ, Meng J, Wang JW, Kong QS, Li LL, Ge SM, Ren X, Yao XK, Liu WJ 2019: Correlation analysis between stride characteristics and racing ability of 2-year-old Yili horses in track conditions. J Equine Vet Sci 75: 19-24 <https://doi.org/10.1016/j.jevs.2018.12.022>
29. Zhang XH, Tian Z, Lei W, Zhao ZA, Wang TS, Yang ZM 2012: Differential expression of interleukin 1 receptor type II during mouse decidualization. Reprod Sci 19: 923-931 <https://doi.org/10.1177/1933719112438444>
30. Zhu B, Chen C, Moyzis RK, Dong Q, Chen C, He Q, Li J, Li J, Lei X, Lin C 2013: The DOPA decarboxylase (DDC) gene is associated with alerting attention. Prog Neuro-Psychoph 43: 140-145 <https://doi.org/10.1016/j.pnpbp.2012.12.020>
front cover
  • ISSN 0001-7213 (printed)
  • ISSN 1801-7576 (electronic)

Current issue

Archive