Acta Vet. Brno 2024, 93: 331-337
https://doi.org/10.2754/avb202493030331
Cryoprotective potential of urea in bat cells in vitro
References
1. 2020: Low seasonal variation in greater mouse-eared bat (Myotis myotis) blood parameters. PLoS One 15: e0234784
< H, Zukal J, Linhart P, Berkova H, Brichta J, Kovacova V, Kubickova A, Abdelsalam EEE, Bartonicka T, Zajickova R, Pikula J https://doi.org/10.1371/journal.pone.0234784>
2. 2001: A molecular basis of cryopreservation failure and its modulation to improve cell survival. Cell Transplant 10: 561-571
< JM, Vogel MJ, Van Buskirk R, Baust JG https://doi.org/10.3727/000000001783986413>
3. 2005: Cryoprotection by urea in a terrestrially hibernating frog. J Exp Biol 208: 4079-4089
< JP, Lee RE Jr https://doi.org/10.1242/jeb.01859>
4. 2008: Urea loading enhances freezing survival and postfreeze recovery in a terrestrially hibernating frog. J Exp Biol 211: 2969-2975
< JP, Lee RE Jr https://doi.org/10.1242/jeb.019695>
5. 1993 Glucose concentration regulates freeze tolerance in the wood frog Rana sylvatica. J Exp Biol 181: 245-255
< JP, Lee RE, Lortz PH https://doi.org/10.1242/jeb.181.1.245>
6. Davis WH 2012: Hibernation: Ecology and Physiological Ecology. In: Wimsatt W (Ed): Biology of Bats. Elsevier, Amsterdam, pp. 265-294
7. 1990: Biochemistry of fish antifreeze proteins. Faseb J 4: 2460-2468
< PL, Hew CL https://doi.org/10.1096/fasebj.4.8.2185972>
8. 1967: Responses of bats from temperate regions to changes in ambient temperature. Biol Bull 132: 320-328
< WH, Reite OB https://doi.org/10.2307/1539637>
9. EPA 2011: Toxicological Review of Urea (CAS No. 57-13-6). In Support of Summary Information on the Integrated Risk Information System (IRIS) U.S. Environmental Protection Agency, Washington, DC, EPA/635/R-10/005A. Available at: https://iris.epa.gov/static/pdfs/1022tr.pdf. Last modified July, 2011. Accessed September 1, 2022
10. 2000: Mechanisms of cryoinjury in living cells. ILAR J 41: 187-196
< D, Critser JK https://doi.org/10.1093/ilar.41.4.187>
11. 2014: Establishment of Myotis myotis cell lines-model for investigation of host-pathogen interaction in a natural host for emerging viruses. PLoS One 9: e109795
< X, Korytář T, Zhu Y, Pikula J, Bandouchova H, Zukal J, Köllner B https://doi.org/10.1371/journal.pone.0109795>
12. 2022: Torpor/hibernation cycle may enhance the risk of insecticides for bats: an in vitro study. Acta Vet Brno 91: 59-68
< M, Banďouchová H, Abdelsalam EEE, Linhart P, Sedláčková J, Seidlová V, Zukal J, Pikula J https://doi.org/10.2754/avb202291010059>
13. 2001: Activation and apoptosis of murine peritoneal macrophages by acute cold stress. Biochem Biophys Res Commun 283: 700-706
< T, Suzuki K, Hitomi Y, Iwabuchi K, Onoé K, Ishida H, Izawa T, Ji LL, Ohno H https://doi.org/10.1006/bbrc.2001.4843>
14. 2023: Bat-derived cells use glucose as a cryoprotectant. J Therm Biol 115: 103652
< M, Seidlova V, Zukal J, Dundarova H, Bednarikova S, Pikula J https://doi.org/10.1016/j.jtherbio.2023.103652>
15. 2022: Performance of bat-derived macrophages at different temperatures. Front Vet Sci 9: 978756
< M, Seidlova V, Zukal J, Dundarova H, Zukalova K, Pikula J https://doi.org/10.3389/fvets.2022.978756>
16. 2013: A review of factors affecting cave climates for hibernating bats in temperate North America. Environ Rev 21: 28-39
< RW https://doi.org/10.1139/er-2012-0042>
17. 2019: DMSO induces drastic changes in human cellular processes and epigenetic landscape in vitro. Sci Rep 9: 4641
< M, Lienhard M, Schrooders Y, Clayton O, Nudischer R, Boerno S, Timmermann B, Selevsek N, Schlapbach R, Gmuender H, Gotta S, Geraedts J, Herwig R, Kleinjans J, Caiment F https://doi.org/10.1038/s41598-019-40660-0>