Acta Vet. Brno 2024, 93: 289-298

https://doi.org/10.2754/avb202493030289

Seasonal ovarian activity and oocyte size in ovarian follicles of sexually mature gilts

Petronela Kyzeková, Katarína Bárdová, Peter Reichel, Róbert Link, Jaroslav Novotný, Gabriela Čonková-Skybová

University of Veterinary Medicine and Pharmacy in Košice, Clinic of Swine, Košice, Slovakia

Received June 14, 2023
Accepted July 11, 2024

References

1. Alwarez GM, Dalvit GC, Ach M, Miguez MS, Cetica PD 2009: Immature oocyte quality and maturational competence of porcine cumulus-oocyte complexes subpopulations. Biocell 33: 167-177
2. Auvigne V, Leneveu P, Jehannin C, Peltoniemi O, Sallé E 2010: Seasonal infertility in sows: a five year field study to analyze the relative roles of heat stress and photoperiod. Theriogenology 74: 60-66 <https://doi.org/10.1016/j.theriogenology.2009.12.019>
3. Bagg MA, Vassena R, Papasso-Brambilla E, Grupen CG, Armstrong DT, Gandolfi F 2004: Changes in ovarian, follicular, and oocyte morphology immediately after the onset of puberty are not accompanied by an increase in oocyte developmental competence in the pig. Theriogenology 62: 1003-1011 <https://doi.org/10.1016/j.theriogenology.2003.12.028>
4. Bartkova A, Morovic M, Strejcek F, Murin M, Benc M, Percinic FP, Laurincik J 2020: Characterization of porcine oocytes stained with Lissamine Green B and their developmental potential in vitro. Anim Reprod (Belo Horizonte) 17: 1-11
5. Belstra BA, Flowers WL, See MT 2004: Factors affecting temporal relationships between estrus and ovulation in commercial sow farms. Anim Reprod Sci 84: 377-394 <https://doi.org/10.1016/j.anireprosci.2004.02.005>
6. Bertoldo MJ, Holyoake PK, Evans G, Grupen CG 2011: Seasonal effects on oocyte developmental competence in sows experiencing pregnancy loss. Anim Reprod Sci 124: 104-111 <https://doi.org/10.1016/j.anireprosci.2011.02.012>
7. Bertoldo MJ, Holyoake PK, Evans G, Grupen CG 2012: Seasonal variation in the ovarian function of sows. Reprod Fertil Dev 24: 822-834 <https://doi.org/10.1071/RD11249>
8. Bertoldo MJ, Nadal-Desbarats L, Gérard N, Dubois A, Holyoake PK, Grupen CG 2013: Differences in the metabolomic signatures of porcine follicular fluid collected from environments associated with good and poor oocyte quality. Reprod 146: 221-231 <https://doi.org/10.1530/REP-13-0142>
9. Bertoldo M, Holyoake PK, Evans G, Grupen CG 2010: Oocyte developmental competence is reduced in sows during the seasonal infertility period. Reprod Fertil Dev 22: 222-229
10. Bracken CJ, Lamberson WR, Safranski TJ, Lucy MC 2003: Factors affecting follicular populations on Day 3 postweaning and interval to ovulation in a commercial sow herd. Theriogenology 60: 11-20 <https://doi.org/10.1016/S0093-691X(02)01287-6>
11. Costermans NGJ, Soede NM, Tricht F, van Blokland M, Kemp B, Keijer J, Teerds KJ 2020: Follicular fluid steroid profile in sows: relationship to follicle size and oocyte quality. Biol Reprod 102: 3740-3749
12. De Rensis F, Kirkwood RN 2016: Control of estrus and ovulation: Fertility to timed insemination of gilts and sows. Theriogenology 86: 1460-1466 <https://doi.org/10.1016/j.theriogenology.2016.04.089>
13. De Rensis F, Ziecik AJ, Kirkwood RN 2017: Seas onal infertility in gilts and sows: Aetiology, clinical implications and treatments. Theriogenology 96: 111-117 <https://doi.org/10.1016/j.theriogenology.2017.04.004>
14. Evans ACO, Mossa F, Walsh SW, Scheetz D, Jimenez-Krassel, F, Ireland JLH, Smith GW, Ireland JJ 2012: Effects of maternal environment during gestation on ovarian folliculogenesis and consequences for fertility in bovine offspring. Reprod Domest Anim 47: 31-37 <https://doi.org/10.1111/j.1439-0531.2012.02052.x>
15. Ferguson EM, Slevin J, Edwards SA, Hunter MG, Ashworth CJ 2006: Effect of alterations in the quantity and composition of the pre-mating diet on embryo survival and foetal growth in the pig. Anim Reprod Sci 96: 89-103 <https://doi.org/10.1016/j.anireprosci.2005.11.007>
16. Gad A, Murin M, Bartkova A, Kinterova V, Marcollova K, Laurincik J, Prochazka R 2022: Small-extracellular vesicles and their microRNA cargo from porcine follicular fluids: the potential association with oocyte quality. J Anim Sci Biotechnol 13: 1-16 <https://doi.org/10.1186/s40104-022-00723-1>
17. Griffin J, Emery BR, Huang I, Peterson CM, Carrell DT 2006: Comparative analysis of follicle morphology and oocyte diameter in four mammalian species (mouse, hamster, pig and human). J Exp Clin Assist Reprod 3: 5-9 <https://doi.org/10.1186/1743-1050-3-2>
18. Grupen CG, McIlfatrick SM, Ashman RJ, Boquest AC, Armstrong DT, Nottle MB 2003: Relationship between donor animal age, follicular fluid steroid content and oocyte developmental competence in the pig. Reprod Fertil Dev 15: 81-87 <https://doi.org/10.1071/RD02086>
19. Gupta MK, Uhm SJ, Lee HT 2007: Sexual maturity and reproductive phase of oocyte donor influence the developmental ability and apoptosis of cloned and parthenogenetic porcine embryos. Anim Reprod Sci 108: 107-121 <https://doi.org/10.1016/j.anireprosci.2007.07.016>
20. Hale B, Hager CL, Seibert JT, Selsby JT, Baumgard LH, Keating AF, Ross JW 2017: Heat stress induces autophagy in pig ovaries during follicular development. Biol Reprod 97: 426-437 <https://doi.org/10.1093/biolre/iox097>
21. Hansen PJ, Drost M, Rivera RM, Paula-Lopes FF, Mal-Katanani Y, Krininger CE, Chase CC Jr. 2001: Adverse impact of heat stress on embryo production: causes and strategies for mitigation. Theriogenology 55: 91-103 <https://doi.org/10.1016/S0093-691X(00)00448-9>
22. Hälli O, Peltoniemi OAT, Tast A, Virolainen JV, Munsterhjelm C, Valros M, Heinonen A 2008: Photoperiod and luteinizing hormone secretion in domestic and wild pigs. Anim Reprod Sci 15: 99-106 <https://doi.org/10.1016/j.anireprosci.2006.11.019>
23. Hu JH, Dong JY, Zeng Z, Wu J, Tan XS, Tang T, Yan J, Jin ChZ 2020: Using exosomal miRNAs extracted from porcine follicular fluid to investigate their role in oocyte development. BMC Vet Res 16: 1-13
24. Iida R, Koketsu Y 2013: Interactions between climatic and production factors on returns of female pigs to service during summer in Japanese commercial breeding herds. Theriogenology 80: 487-493 <https://doi.org/10.1016/j.theriogenology.2013.05.011>
25. Inoue Y, Munakata Y, Shinozawa A, Kawahara-Miki R, Shirasuna K, Iwata H 2020: Prediction of major microRNAs in follicular fluid regulating porcine oocyte development. J Assist Reprod Genet 37: 2569-2579 <https://doi.org/10.1007/s10815-020-01909-0>
26. Jochems R, Gaustad AH, Styrishave B, Zak LJ, Oskam IC, Grindflek E, Myromslien FD, Kommisrud E, Krogenćs AK 2022: Follicular fluid steroid hormones and in vitro embryo development in Duroc and Landrace pigs. Theriogenology 190: 15-21 <https://doi.org/10.1016/j.theriogenology.2022.07.004>
27. Jochems R, Gaustad AH, Zak LJ, Grindflek E, Zeremichael TT, Oskam IC, Myromslien FD, Kommisrud E, Krogenćs AK 2021: Ovarian characteristics and in vitro nuclear and cytoplasmic oocyte maturation in Duroc and Landrace pigs. Vet Med Sci 7: 1845-1853 <https://doi.org/10.1002/vms3.498>
28. Knox RV, Zas SL 2001: Factors influencing estrus and ovulation in weaned sows as determined by transrectal ultrasound. J Anim Sci 79: 2957-2963 <https://doi.org/10.2527/2001.79122957x>
29. Knox RV 2014: Impact of swine reproductive technologies on pig and global food production. Adv Exp Med Biol 752: 131-160 <https://doi.org/10.1007/978-1-4614-8887-3_7>
30. Knox RV 2016: Artificial insemination in pigs today. Theriogenology 85: 83-93 <https://doi.org/10.1016/j.theriogenology.2015.07.009>
31. Knox RV 2019: Factors influencing follicle development in gilts and sows and management strategies used to regulate growth for control of estrus and ovulation. J Anim Sci 97: 1433-1445 <https://doi.org/10.1093/jas/skz036>
32. Kulus M, Kranc W, Sujka-Kordowska P, Mozdziak P, Jankowski M, Konwerska A, Kulus J, Bukowska D, Skowrońsk M, Piotrowska-Kempisty H, Nowicki M, Kempisty B, Antosik P 2020: The processes of cellular growth, aging, and programmed cell death are involved in lifespan of ovarian granulosa cells during short-term IVC – study based on animal model. Theriogenology 148: 76-88 <https://doi.org/10.1016/j.theriogenology.2020.02.044>
33. Kumar S, Devi B, Purkayastha A, Bharti PK, Doley S, Kadirve, G 2016: Porcine ovarian biometry, oocyte retrieval and quality of oocytes under different seasons in north east hill region. Ind J Anim Sci 86: 300-330
34. Kwak SS, Yoon JCD, Cheong SA, Jeon YY, Lee ES, Hyun SH 2014: The new system of shorter porcine oocyte in vitro maturation (18 hours) using ≥8 mm follicles derived from cumulus-oocyte complexes. Theriogenology 81: 291-301 <https://doi.org/10.1016/j.theriogenology.2013.09.028>
35. Langendijk P 2022: Four feeding practices for supporting gestating and lactating sows. International Pig Topics 37: 22-23
36. Liu RH, Li YH, Jiao LH, Wang XN, Wang H, Wang WH 2002: Extracellular and intracellular factors affecting nuclear and cytoplasmic maturation of porcine oocytes collected from different sizes of follicles. Zygote 10: 253-260 <https://doi.org/10.1017/S0967199402002332>
37. Lopes TP, Padilla L, Bolarin A, Rodriguez-Martinez H, Jordi R 2020: ovarian follicle growth during lactation determines the reproductive performance of weaned sows. Animals (Basel) 10: 1012 <https://doi.org/10.3390/ani10061012>
38. Lopes TP, Sanchez-Osorio J, Bolarin A, Martinez EA, Roca J 2014: Relevance of ovarian follicular development to the seasonal impairment of fertility in weaned sows. Vet J 199: 382-386 <https://doi.org/10.1016/j.tvjl.2013.11.026>
39. Lucy MC, Liu J, Boyd CK, Bracken CJ 2001: Ovarian follicular growth in sows. Reprod Suppl 58: 31-45
40. Marcha R, Vigneron C, Perreau C, Bali-Papp A, Mermillod P 2002: Effect of follicular size on meiotic and developmental competence of porcine oocytes. Theriogenology 57: 1523-1532 <https://doi.org/10.1016/S0093-691X(02)00655-6>
41. Martinat-Botté F, Venturi E, Guillouet G, Driancourt MA, Terqui M 2010: Induction and synchronization of ovulations of nulliparous and multiparous sows with an injection of gonadotropin-releasing hormone agonist (Receptal). Theriogenology 73: 332-342 <https://doi.org/10.1016/j.theriogenology.2009.09.017>
42. Munakata Y, Ueda M, Kawahara-Miki R, Kansaku K, Itami N, Shirasuna K, Kuwayama T, Iwata H 2018: Follicular factors determining granulosa cell number and developmental competence of porcine oocytes. J Assist Reprod Genet 35: 1809-1819 <https://doi.org/10.1007/s10815-018-1247-9>
43. Peltoniemi OAT, Virolainen JV 2006: Seasonality of reproduction in gilts and sows. Soc Reprod Fertil Suppl 62: 205-218
44. Quesnel H, Boulot S, Le Cozler Y 2005: Seasonal variation of reproductive performance of the sow. INRA Prod Anim 18: 101-110 <https://doi.org/10.20870/productions-animales.2005.18.2.3513>
45. Rybska M, Knap S, Jankowski M, Jeseta M, Bukowska D, Antosik P, Nowicki M, Zabel M, Kempisty B, Jaśkowsk JM 2018: Characteristic of factors influencing the proper course of folliculogenesis in mammal. Med J Cell Biol 6: 33-38 <https://doi.org/10.2478/acb-2018-0006>
46. Seyfang J, Langendijk P, Chen TY, Bouwman E, Kirkwood RN 2016: Human chorionic gonadotrophin in early gestation induces growth of estrogenic ovarian follicles and improves primiparous sow fertility during summer. Anim Reprod Sci 172: 21-25 <https://doi.org/10.1016/j.anireprosci.2016.06.009>
47. Shibahara H, Ishiguro A, Inoue Y, Koumei S, Kuwayama T, Iwata H 2020: Mechanism of palmitic acid-induced deterioration of in vitro development of porcine oocytes and granulosa cells. Theriogenology 141: 54-61 <https://doi.org/10.1016/j.theriogenology.2019.09.006>
48. Swinbourne AM, Kelly JM, Kind KL, Kennaway DJ, van Wettere WHEJ 2014: The effects of season and moderate nutritional restriction on ovarian function and oocyte nuclear maturation in cycling gilts. Theriogenology 82: 1303-1309 <https://doi.org/10.1016/j.theriogenology.2014.08.016>
49. Tantasuparuk W, Lundeheim N, Dalin AM, Kunavongkrit A, Einarsson S 2000: Reproductive performance of purebred Landrace and Yorkshire sows in Thailand with special reference to seasonal influence and parity number. Theriogenology 54: 481-496 <https://doi.org/10.1016/S0093-691X(00)00364-2>
50. Tast A, Peltoniemi OAT, Virolaine JV, Love RJ 2002: Early disruption of pregnancy as a manifestation of seasonal infertility in pigs. Anim Reprod Sci 4: 75-86 <https://doi.org/10.1016/S0378-4320(02)00167-7>
51. Tsakmakidis IA, Tsantarliotou M, Michos IA, Basioura AG, Tsousis G, Boscos CM 2017: Selected steps of swine ICSI method to overcome seasonal effect and achieve acceptable early embryonic development, a preliminary study. Pol J Vet 20: 607-609 <https://doi.org/10.1515/pjvs-2017-0075>
52. Tummaruk P 2012: Effects of season, outdoor climate and photo period on age at first observed estrus in Landrace×Yorkshire crossbred gilts in Thailand. Livest Sci March 144: 163-172 <https://doi.org/10.1016/j.livsci.2011.11.010>
53. Yoshizawa M, Watanabe H, Fukui Y 2009: Effects of the presence and the numbers of corpora lutea in non-delivered and delivered pigs on in vitro oocyte maturation and embryonic development. J Reprod Dev 55: 655-660 <https://doi.org/10.1262/jrd.20244>
54. Zhao H, Xie S, Zhang N, Ao Z, Wu X, Yang L, Shi J, Mai R, Zheng E, Cai G, Wu Z, Li Z 2020: Source and follicular fluid treatment during the in vitro maturation of recipient oocytes affects the development of cloned pig embryo. Cell Reprogram 22: 71-81 <https://doi.org/10.1089/cell.2019.0091>
front cover
  • ISSN 0001-7213 (printed)
  • ISSN 1801-7576 (electronic)

Current issue

Archive