Acta Vet. Brno 2024, 93: 331-337
https://doi.org/10.2754/avb202493030331
Cryoprotective potential of urea in bat cells in vitro
References
1. H, Zukal J, Linhart P, Berkova H, Brichta J, Kovacova V, Kubickova A, Abdelsalam EEE, Bartonicka T, Zajickova R, Pikula J 2020: Low seasonal variation in greater mouse-eared bat (Myotis myotis) blood parameters. PLoS One 15: e0234784
<https://doi.org/10.1371/journal.pone.0234784>
2. JM, Vogel MJ, Van Buskirk R, Baust JG 2001: A molecular basis of cryopreservation failure and its modulation to improve cell survival. Cell Transplant 10: 561-571
<https://doi.org/10.3727/000000001783986413>
3. JP, Lee RE Jr 2005: Cryoprotection by urea in a terrestrially hibernating frog. J Exp Biol 208: 4079-4089
<https://doi.org/10.1242/jeb.01859>
4. JP, Lee RE Jr 2008: Urea loading enhances freezing survival and postfreeze recovery in a terrestrially hibernating frog. J Exp Biol 211: 2969-2975
<https://doi.org/10.1242/jeb.019695>
5. JP, Lee RE, Lortz PH 1993 Glucose concentration regulates freeze tolerance in the wood frog Rana sylvatica. J Exp Biol 181: 245-255
<https://doi.org/10.1242/jeb.181.1.245>
6. Davis WH 2012: Hibernation: Ecology and Physiological Ecology. In: Wimsatt W (Ed): Biology of Bats. Elsevier, Amsterdam, pp. 265-294
7. PL, Hew CL 1990: Biochemistry of fish antifreeze proteins. Faseb J 4: 2460-2468
<https://doi.org/10.1096/fasebj.4.8.2185972>
8. WH, Reite OB 1967: Responses of bats from temperate regions to changes in ambient temperature. Biol Bull 132: 320-328
<https://doi.org/10.2307/1539637>
9. EPA 2011: Toxicological Review of Urea (CAS No. 57-13-6). In Support of Summary Information on the Integrated Risk Information System (IRIS) U.S. Environmental Protection Agency, Washington, DC, EPA/635/R-10/005A. Available at: https://iris.epa.gov/static/pdfs/1022tr.pdf. Last modified July, 2011. Accessed September 1, 2022
10. D, Critser JK 2000: Mechanisms of cryoinjury in living cells. ILAR J 41: 187-196
<https://doi.org/10.1093/ilar.41.4.187>
11. X, Korytář T, Zhu Y, Pikula J, Bandouchova H, Zukal J, Köllner B 2014: Establishment of Myotis myotis cell lines-model for investigation of host-pathogen interaction in a natural host for emerging viruses. PLoS One 9: e109795
<https://doi.org/10.1371/journal.pone.0109795>
12. M, Banďouchová H, Abdelsalam EEE, Linhart P, Sedláčková J, Seidlová V, Zukal J, Pikula J 2022: Torpor/hibernation cycle may enhance the risk of insecticides for bats: an in vitro study. Acta Vet Brno 91: 59-68
<https://doi.org/10.2754/avb202291010059>
13. T, Suzuki K, Hitomi Y, Iwabuchi K, Onoé K, Ishida H, Izawa T, Ji LL, Ohno H 2001: Activation and apoptosis of murine peritoneal macrophages by acute cold stress. Biochem Biophys Res Commun 283: 700-706
<https://doi.org/10.1006/bbrc.2001.4843>
14. M, Seidlova V, Zukal J, Dundarova H, Bednarikova S, Pikula J 2023: Bat-derived cells use glucose as a cryoprotectant. J Therm Biol 115: 103652
<https://doi.org/10.1016/j.jtherbio.2023.103652>
15. M, Seidlova V, Zukal J, Dundarova H, Zukalova K, Pikula J 2022: Performance of bat-derived macrophages at different temperatures. Front Vet Sci 9: 978756
<https://doi.org/10.3389/fvets.2022.978756>
16. RW 2013: A review of factors affecting cave climates for hibernating bats in temperate North America. Environ Rev 21: 28-39
<https://doi.org/10.1139/er-2012-0042>
17. M, Lienhard M, Schrooders Y, Clayton O, Nudischer R, Boerno S, Timmermann B, Selevsek N, Schlapbach R, Gmuender H, Gotta S, Geraedts J, Herwig R, Kleinjans J, Caiment F 2019: DMSO induces drastic changes in human cellular processes and epigenetic landscape in vitro. Sci Rep 9: 4641
<https://doi.org/10.1038/s41598-019-40660-0>

