Acta Vet. Brno 2025, 94: 43-49
https://doi.org/10.2754/avb202594010043
Application of 405 nm visible light to selected bacterial species in animal husbandry
References
1. 2019: Phototoxic effect of visible blue light on Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. Online J Dent Oral Heal 2: 2-5
MA, Al Jorany AAA, Al-Shamahy HA, Al Sharani AA
2. 2022: Efficacy of violet–blue light to inactive microbial growth. Sci Rep 12: 20179
< D, Lucarelli V, De Palma I, Puccio A, Nante N, Cevenini G, Messina G https://doi.org/10.1038/s41598-022-24563-1>
3. 2023: Efficacy of violet-blue (405 nm) LED lamps for disinfection of high-environmental-contact surfaces in healthcare facilities: Leading to the inactivation of microorganisms and reduction of MRSA contamination. Pathogens 12: 1338
< D, Manzi P, De Palma I, Puccio A, Nante N, Barcaccia M, Marini D, Pietrella D https://doi.org/10.3390/pathogens12111338>
4. 2006: Comparison of UV C light and chemicals for disinfection of surfaces in hospital isolation units. Infect Control Hosp Epidemiol 27: 729-734
< BM, Bånrud H, Bøe E, Bjordal O, Drangsholt F https://doi.org/10.1086/503643>
5. 2016: Impact of room location on UV-C irradiance and UV-C dosage and antimicrobial effect delivered by a mobile UV-C light device. Infect Control Hosp Epidemiol 37: 667-672
< JM, Farre PA, Towle D, Fekieta R, Aniskiewicz M https://doi.org/10.1017/ice.2016.35>
6. 2017: Spectrally resolved infrared microscopy and chemometric tools to reveal the interaction between blue light (470 nm) and methicillin-resistant Staphylococcus aureus. J Photochem Photobiol B: Biol 167: 150-157
< VV, Aboualizadeh E, Masson-Meyers DS, Eells JT, Enwemeka CS, Hirschmugl CJ https://doi.org/10.1016/j.jphotobiol.2016.12.030>
7. 2020: Optimizing the bactericidal effect of pulsed blue light on Propionibacterium acnes-a correlative fluorescence spectroscopy study. J Photochem Photobiol B 202: 111701
< VV, Masson-Meyers DS, Tong W, Castel C, Enwemeka CS https://doi.org/10.1016/j.jphotobiol.2019.111701>
8. 2012: Blue light for infectious diseases: Propionibacterium acnes, Helicobacter pylori, and beyond? Drug Resist Updat 15: 223-236
< T, Gupta A, Murray CK, Vrahas MS, Tegos GP, Hamblin MR https://doi.org/10.1016/j.drup.2012.07.001>
9. 2019: Antimicrobial blue light inactivation of international clones of multidrug-resistant Escherichia coli ST10, ST131 and ST648. Photodiagnosis Photodyn Ther 27: 51-53
< C, Sabino CP, Bueris V, Fernandes MR, Pogliani FC, Lincopan N, Sellera FP https://doi.org/10.1016/j.pdpdt.2019.05.014>
10. 2023: Effectiveness of near-UVA in SARS-CoV-2 inactivation. Epidemiol Infect 151: e76
< E, Amodeo D, Cevenini G, Nante N, Messina G https://doi.org/10.1017/S0950268823000560>
11. 2020: Control measures for SARS-CoV-2: a review on light-based inactivation of single-stranded RNA viruses. Pathogens 9: 737
< J, Dunowska M, Wu S, Brightwell G https://doi.org/10.3390/pathogens9090737>
12. 2021: Inactivation effect of violet and blue light on ESKAPE pathogens and closely related non-pathogenic bacterial species–a promising tool against antibiotic-sensitive and antibiotic-resistant microorganisms. Front Microbiol 11: 612367
< K, Bauer R, Meurle T, Spellerberg B, Hessling M https://doi.org/10.3389/fmicb.2020.612367>
13. 2020: Spectrum of virucidal activity from ultraviolet to infrared radiation. Photochem Photobiol Sci 19: 1262-1270
< L, Torres AE, Narla S, Lyons AB, Kohli I, Gelfand JM, Ozog DM, Hamzavi IH, Lim, HW https://doi.org/10.1039/d0pp00221f>
14. 2016: Inactivation by 405±5 nm light emitting diode on Escherichia coli O157: H7, Salmonella Typhimurium, and Shigella sonnei under refrigerated condition might be due to the loss of membrane integrity. Food Control 59: 99-107
< MJ, Mikš-Krajnik M, Kumar A, Yuk HG https://doi.org/10.1016/j.foodcont.2015.05.012>
15. 2017: Antibacterial mechanism of 405-nanometer light-emitting diode against Salmonella at refrigeration temperature. Appl Environ Microbiol 83: e02582-16
< MJ, Yuk HG https://doi.org/10.1128/AEM.02582-16>
16. 2021: Improper use of the germicidal range ultraviolet lamp for household disinfection leading to phototoxicity in COVID-19 suspects. Cornea 40: 121-122
< KCP, Ko TCS https://doi.org/10.1097/ICO.0000000000002397>
17. 2016: A new proof of concept in bacterial reduction: antimicrobial action of violet-blue light (405 nm) in ex vivo stored plasma. J Blood Transfus 2016: 2920514
< M, Anderson JG, MacGregor SJ, White T, Atreya CD https://doi.org/10.1155/2016/2920514>
18. 2013: Continuous decontamination of an intensive care isolation room during patient occupancy using 405 nm light technology. J Infect Prev 14: 176-181
< M, Booth MG, Anderson JG, MacGregor SJ, Woolsey GA, Coia JE, Hamilton K, Gettinby G https://doi.org/10.1177/1757177413483646>
19. 2009: Inactivation of bacterial pathogens following exposure to light from a 405-nanometer light-emitting diode array. Appl Environ Microbiol 75: 1932-1937
< M, MacGregor SJ, Anderson JG, Woolsey G https://doi.org/10.1128/AEM.01892-08>
20. 2008: The role of oxygen in the visible-light inactivation of Staphylococcus aureus. J Photochem Photobiol B 92: 180-184
< M, MacGregor SJ, Anderson JG, Woolsey GA https://doi.org/10.1016/j.jphotobiol.2008.06.006>
21. 2014: 405 nm light technology for the inactivation of pathogens and its potential role for environmental disinfection and infection control. J Hosp Infect 88: 1-11
< M, McKenzie K, Anderson JG, Gettinby G, MacGregor SJ https://doi.org/10.1016/j.jhin.2014.06.004>
22. 2013: 405 nm light exposure of osteoblasts and inactivation of bacterial isolates from arthroplasty patients: potential for new disinfection applications? Eur Cell Mater 25: 204-214
< R, Gupta S, MacLean M, Ramakrishnan P, Anderson J, MacGregor S, Meek D, Grant M https://doi.org/10.22203/eCM.v025a15>
23. 2014: Enhanced inactivation of Escherichia coli and Listeria monocytogenes by exposure to 405 nm light under sub-lethal temperature, salt and acid stress conditions. Int J Food Microbiol 170: 91-98
< K, Maclean M, Timoshkin IV, MacGregor SJ, Anderson JG https://doi.org/10.1016/j.ijfoodmicro.2013.10.016>
24. 2012: Bactericidal effects of 405 nm light exposure demonstrated by inactivation of Escherichia, Salmonella, Shigella, Listeria, and Mycobacterium species in liquid suspensions and on exposed surfaces. Sci World J 2012: 137805
< LE, Maclean M, Endarko E, MacGregor SJ, Anderson JG https://doi.org/10.1100/2012/137805>
25. 2019: Inactivation of bacterial and fungal spores by UV irradiation and gaseous iodine treatment applied to air handling filters. Sci Total Environ 671: 59-65
< W, Yermakov M, Indugula R, Reponen T, Grinshpun SA https://doi.org/10.1016/j.scitotenv.2019.03.310>
26. 2004: ALA induced photodynamic effects on gram positive and negative bacteria. Photochem Photobiol Sci 3: 430-435
< Y, Salmon-Divon M, Shporen E, Malik Z https://doi.org/10.1039/b315633h>
27. 2010: The history of ultraviolet germicidal irradiation for air disinfection. Public Health Rep 125: 15-27
< NG https://doi.org/10.1177/003335491012500105>
28. 2023a: Laboratory evaluation of the broad-spectrum antibacterial efficacy of a low-irradiance visible 405-nm light system for surface-simulated decontamination. Health Technol 13: 615-629
< LG, Dougall LR, Ilieva Z, McKenzie K, Anderson JG, MacGregor SJ, Maclean M https://doi.org/10.1007/s12553-023-00761-3>
29. 2023b: Viricidal efficacy of a 405-nm environmental decontamination system for inactivation of bacteriophage phi6: Surrogate for SARS-CoV-2. Photochem Photobiol 99: 1493-1500
< LG, Ilieva Z, Morris G, Anderson JG, MacGregor SJ, Maclean M https://doi.org/10.1111/php.13798>
30. 2013: Balancing the risk of eye irritation from UV-C with infection from bioaerosols. Photochem Photobiol 89: 770-776
< D https://doi.org/10.1111/php.12093>
31. 1988: The dose-response relationship of tumorigenesis by ultraviolet radiation of 254 nm. Photochem Photobiol 47: 245-253
< HJCM, Van Der Putte SCJ, Van Der Leun JC https://doi.org/10.1111/j.1751-1097.1988.tb02722.x>
32. 2017: New proof-of-concept in viral inactivation: virucidal efficacy of 405 nm light against feline calicivirus as a model for norovirus decontamination. Food Environ Virol 9: 159-167
< RM, Maclean M, Coia JE, Graham E, McDonald M, Atreya CD, MacGregor SJ, Anderson JG https://doi.org/10.1007/s12560-016-9275-z>
33. 2007: Inactivation of viruses on surfaces by ultraviolet germicidal irradiation. J Occup Environ Hyg 4: 400-405
< CC, Li CS https://doi.org/10.1080/15459620701329012>
34. 2022: Growth medium-and strain-dependent bactericidal efficacy of blue light against Shiga toxin-producing Escherichia coli on food-grade stainless steel and plastic. Food Microbiol 103: 103953
< S, Hadi J, Brightwell G https://doi.org/10.1016/j.fm.2021.103953>
35. 2014: Antimicrobial blue light therapy for multidrug-resistant Acinetobacter baumannii infection in a mouse burn model: implications for prophylaxis and treatment of combat-related wound infections. J Infect Dis 209: 1963-1971
< Y, Zhu Y, Gupta A, Huang Y, Murray CK, Vrahas MS, Sherwood ME, Baer DG, Hamblin MR, Dai T https://doi.org/10.1093/infdis/jit842>
36. 2022: Evaluating the efficacy of anti-fungal blue light therapies via analyzing tissue section images. Lasers Med Sci 37: 831-841
< Y, Zhang Y, Dong J https://doi.org/10.1007/s10103-021-03319-9>