Acta Vet. Brno 2025, 94: 43-49

https://doi.org/10.2754/avb202594010043

Application of 405 nm visible light to selected bacterial species in animal husbandry

Veronika Vojtkovská1, Věra Vaibarová2, Lucie Janíček Hrubá2, Miroslav Macháček1

1University of Veterinary Sciences Brno, Faculty of Veterinary Hygiene and Ecology, Department of Animal Protection and Welfare & Veterinary Public Health, Brno, Czech Republic
2University of Veterinary Sciences Brno, Faculty of Veterinary Medicine, Department of Infectious Diseases and Microbiology, Brno, Czech Republic

Received August 28, 2024
Accepted January 10, 2025

References

1. Al Hamzi MA, Al Jorany AAA, Al-Shamahy HA, Al Sharani AA 2019: Phototoxic effect of visible blue light on Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. Online J Dent Oral Heal 2: 2-5
2. Amodeo D, Lucarelli V, De Palma I, Puccio A, Nante N, Cevenini G, Messina G 2022: Efficacy of violet–blue light to inactive microbial growth. Sci Rep 12: 20179 <https://doi.org/10.1038/s41598-022-24563-1>
3. Amodeo D, Manzi P, De Palma I, Puccio A, Nante N, Barcaccia M, Marini D, Pietrella D 2023: Efficacy of violet-blue (405 nm) LED lamps for disinfection of high-environmental-contact surfaces in healthcare facilities: Leading to the inactivation of microorganisms and reduction of MRSA contamination. Pathogens 12: 1338 <https://doi.org/10.3390/pathogens12111338>
4. Andersen BM, Bånrud H, Bøe E, Bjordal O, Drangsholt F 2006: Comparison of UV C light and chemicals for disinfection of surfaces in hospital isolation units. Infect Control Hosp Epidemiol 27: 729-734 <https://doi.org/10.1086/503643>
5. Boyce JM, Farre PA, Towle D, Fekieta R, Aniskiewicz M 2016: Impact of room location on UV-C irradiance and UV-C dosage and antimicrobial effect delivered by a mobile UV-C light device. Infect Control Hosp Epidemiol 37: 667-672 <https://doi.org/10.1017/ice.2016.35>
6. Bumah VV, Aboualizadeh E, Masson-Meyers DS, Eells JT, Enwemeka CS, Hirschmugl CJ 2017: Spectrally resolved infrared microscopy and chemometric tools to reveal the interaction between blue light (470 nm) and methicillin-resistant Staphylococcus aureus. J Photochem Photobiol B: Biol 167: 150-157 <https://doi.org/10.1016/j.jphotobiol.2016.12.030>
7. Bumah VV, Masson-Meyers DS, Tong W, Castel C, Enwemeka CS 2020: Optimizing the bactericidal effect of pulsed blue light on Propionibacterium acnes-a correlative fluorescence spectroscopy study. J Photochem Photobiol B 202: 111701 <https://doi.org/10.1016/j.jphotobiol.2019.111701>
8. Dai T, Gupta A, Murray CK, Vrahas MS, Tegos GP, Hamblin MR 2012: Blue light for infectious diseases: Propionibacterium acnes, Helicobacter pylori, and beyond? Drug Resist Updat 15: 223-236 <https://doi.org/10.1016/j.drup.2012.07.001>
9. Dos Anjos C, Sabino CP, Bueris V, Fernandes MR, Pogliani FC, Lincopan N, Sellera FP 2019: Antimicrobial blue light inactivation of international clones of multidrug-resistant Escherichia coli ST10, ST131 and ST648. Photodiagnosis Photodyn Ther 27: 51-53 <https://doi.org/10.1016/j.pdpdt.2019.05.014>
10. Frilli E, Amodeo D, Cevenini G, Nante N, Messina G 2023: Effectiveness of near-UVA in SARS-CoV-2 inactivation. Epidemiol Infect 151: e76 <https://doi.org/10.1017/S0950268823000560>
11. Hadi J, Dunowska M, Wu S, Brightwell G 2020: Control measures for SARS-CoV-2: a review on light-based inactivation of single-stranded RNA viruses. Pathogens 9: 737 <https://doi.org/10.3390/pathogens9090737>
12. Hoenes K, Bauer R, Meurle T, Spellerberg B, Hessling M 2021: Inactivation effect of violet and blue light on ESKAPE pathogens and closely related non-pathogenic bacterial species–a promising tool against antibiotic-sensitive and antibiotic-resistant microorganisms. Front Microbiol 11: 612367 <https://doi.org/10.3389/fmicb.2020.612367>
13. Horton L, Torres AE, Narla S, Lyons AB, Kohli I, Gelfand JM, Ozog DM, Hamzavi IH, Lim, HW 2020: Spectrum of virucidal activity from ultraviolet to infrared radiation. Photochem Photobiol Sci 19: 1262-1270 <https://doi.org/10.1039/d0pp00221f>
14. Kim MJ, Mikš-Krajnik M, Kumar A, Yuk HG 2016: Inactivation by 405±5 nm light emitting diode on Escherichia coli O157: H7, Salmonella Typhimurium, and Shigella sonnei under refrigerated condition might be due to the loss of membrane integrity. Food Control 59: 99-107 <https://doi.org/10.1016/j.foodcont.2015.05.012>
15. Kim MJ, Yuk HG 2017: Antibacterial mechanism of 405-nanometer light-emitting diode against Salmonella at refrigeration temperature. Appl Environ Microbiol 83: e02582-16 <https://doi.org/10.1128/AEM.02582-16>
16. Leung KCP, Ko TCS 2021: Improper use of the germicidal range ultraviolet lamp for household disinfection leading to phototoxicity in COVID-19 suspects. Cornea 40: 121-122 <https://doi.org/10.1097/ICO.0000000000002397>
17. Maclean M, Anderson JG, MacGregor SJ, White T, Atreya CD 2016: A new proof of concept in bacterial reduction: antimicrobial action of violet-blue light (405 nm) in ex vivo stored plasma. J Blood Transfus 2016: 2920514 <https://doi.org/10.1155/2016/2920514>
18. Maclean M, Booth MG, Anderson JG, MacGregor SJ, Woolsey GA, Coia JE, Hamilton K, Gettinby G 2013: Continuous decontamination of an intensive care isolation room during patient occupancy using 405 nm light technology. J Infect Prev 14: 176-181 <https://doi.org/10.1177/1757177413483646>
19. Maclean M, MacGregor SJ, Anderson JG, Woolsey G 2009: Inactivation of bacterial pathogens following exposure to light from a 405-nanometer light-emitting diode array. Appl Environ Microbiol 75: 1932-1937 <https://doi.org/10.1128/AEM.01892-08>
20. Maclean M, MacGregor SJ, Anderson JG, Woolsey GA 2008: The role of oxygen in the visible-light inactivation of Staphylococcus aureus. J Photochem Photobiol B 92: 180-184 <https://doi.org/10.1016/j.jphotobiol.2008.06.006>
21. Maclean M, McKenzie K, Anderson JG, Gettinby G, MacGregor SJ 2014: 405 nm light technology for the inactivation of pathogens and its potential role for environmental disinfection and infection control. J Hosp Infect 88: 1-11 <https://doi.org/10.1016/j.jhin.2014.06.004>
22. McDonald R, Gupta S, MacLean M, Ramakrishnan P, Anderson J, MacGregor S, Meek D, Grant M 2013: 405 nm light exposure of osteoblasts and inactivation of bacterial isolates from arthroplasty patients: potential for new disinfection applications? Eur Cell Mater 25: 204-214 <https://doi.org/10.22203/eCM.v025a15>
23. McKenzie K, Maclean M, Timoshkin IV, MacGregor SJ, Anderson JG 2014: Enhanced inactivation of Escherichia coli and Listeria monocytogenes by exposure to 405 nm light under sub-lethal temperature, salt and acid stress conditions. Int J Food Microbiol 170: 91-98 <https://doi.org/10.1016/j.ijfoodmicro.2013.10.016>
24. Murdoch LE, Maclean M, Endarko E, MacGregor SJ, Anderson JG 2012: Bactericidal effects of 405 nm light exposure demonstrated by inactivation of Escherichia, Salmonella, Shigella, Listeria, and Mycobacterium species in liquid suspensions and on exposed surfaces. Sci World J 2012: 137805 <https://doi.org/10.1100/2012/137805>
25. Nakpan W, Yermakov M, Indugula R, Reponen T, Grinshpun SA 2019: Inactivation of bacterial and fungal spores by UV irradiation and gaseous iodine treatment applied to air handling filters. Sci Total Environ 671: 59-65 <https://doi.org/10.1016/j.scitotenv.2019.03.310>
26. Nitzan Y, Salmon-Divon M, Shporen E, Malik Z 2004: ALA induced photodynamic effects on gram positive and negative bacteria. Photochem Photobiol Sci 3: 430-435 <https://doi.org/10.1039/b315633h>
27. Reed NG 2010: The history of ultraviolet germicidal irradiation for air disinfection. Public Health Rep 125: 15-27 <https://doi.org/10.1177/003335491012500105>
28. Sinclair LG, Dougall LR, Ilieva Z, McKenzie K, Anderson JG, MacGregor SJ, Maclean M 2023a: Laboratory evaluation of the broad-spectrum antibacterial efficacy of a low-irradiance visible 405-nm light system for surface-simulated decontamination. Health Technol 13: 615-629 <https://doi.org/10.1007/s12553-023-00761-3>
29. Sinclair LG, Ilieva Z, Morris G, Anderson JG, MacGregor SJ, Maclean M 2023b: Viricidal efficacy of a 405-nm environmental decontamination system for inactivation of bacteriophage phi6: Surrogate for SARS-CoV-2. Photochem Photobiol 99: 1493-1500 <https://doi.org/10.1111/php.13798>
30. Sliney D 2013: Balancing the risk of eye irritation from UV-C with infection from bioaerosols. Photochem Photobiol 89: 770-776 <https://doi.org/10.1111/php.12093>
31. Sterenborg HJCM, Van Der Putte SCJ, Van Der Leun JC 1988: The dose-response relationship of tumorigenesis by ultraviolet radiation of 254 nm. Photochem Photobiol 47: 245-253 <https://doi.org/10.1111/j.1751-1097.1988.tb02722.x>
32. Tomb RM, Maclean M, Coia JE, Graham E, McDonald M, Atreya CD, MacGregor SJ, Anderson JG 2017: New proof-of-concept in viral inactivation: virucidal efficacy of 405 nm light against feline calicivirus as a model for norovirus decontamination. Food Environ Virol 9: 159-167 <https://doi.org/10.1007/s12560-016-9275-z>
33. Tseng CC, Li CS 2007: Inactivation of viruses on surfaces by ultraviolet germicidal irradiation. J Occup Environ Hyg 4: 400-405 <https://doi.org/10.1080/15459620701329012>
34. Wu S, Hadi J, Brightwell G 2022: Growth medium-and strain-dependent bactericidal efficacy of blue light against Shiga toxin-producing Escherichia coli on food-grade stainless steel and plastic. Food Microbiol 103: 103953 <https://doi.org/10.1016/j.fm.2021.103953>
35. Zhang Y, Zhu Y, Gupta A, Huang Y, Murray CK, Vrahas MS, Sherwood ME, Baer DG, Hamblin MR, Dai T 2014: Antimicrobial blue light therapy for multidrug-resistant Acinetobacter baumannii infection in a mouse burn model: implications for prophylaxis and treatment of combat-related wound infections. J Infect Dis 209: 1963-1971 <https://doi.org/10.1093/infdis/jit842>
36. Zhao Y, Zhang Y, Dong J 2022: Evaluating the efficacy of anti-fungal blue light therapies via analyzing tissue section images. Lasers Med Sci 37: 831-841 <https://doi.org/10.1007/s10103-021-03319-9>
front cover
  • ISSN 0001-7213 (printed)
  • ISSN 1801-7576 (electronic)

Current issue

Archive